
Automatica 159 (2024) 109922

Y
a

b

(
o
t
a
b
P

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Adaptive control of a VTOL uncrewed aerial vehicle for
high-performance aerobatic flight✩

ing Chen a,∗, Néstor O. Pérez-Arancibia a,b,∗

Department of Aerospace and Mechanical Engineering, University of Southern California (USC), Los Angeles, CA 90089-1453, USA
School of Mechanical and Materials Engineering, Washington State University (WSU), Pullman, WA 99164-2920, USA

a r t i c l e i n f o

Article history:
Received 18 September 2019
Received in revised form 11 March 2021
Accepted 22 August 2021
Available online 10 November 2023

Keywords:
Aerial robotics
Adaptive control
VTOL UAV
Aerobatic maneuvers
Time-varying actuator dynamics

a b s t r a c t

We present two adaptive control methods conceived to enable a vertical take-off and landing
(VTOL) uncrewed aerial vehicle (UAV) to perform a class of aerobatic maneuvers in the presence of
aerodynamic-coefficient and torque-latency variations induced by changes of the local flow fields
during high-speed aerobatic flight. First, we introduce a linear time-varying (LTV) dynamical model,
which is assumed to have unknown time-dependent parameters, to describe the aerodynamic effects
acting on the actuation dynamics of the system. Then, we present the design of a Lyapunov-based
adaptive control scheme aimed to compensate for undesired behavior of the LTV actuator dynamics,
according to which we derive the control and adaptation laws from a single Lyapunov candidate
function. Next, we propose a modular adaptive control scheme to address the same problem, but
in which the adaptation law is specified separately from that of the controller. We use modern
nonlinear theory to deduce and analyze the conditions that guarantee the global asymptotic stability
of both adaptive control strategies. In order to exemplify the controller synthesis procedures, we
implemented both adaptive control methods on a quadrotor UAV to perform three different types
of aerobatic-flight maneuvers—namely, triple flips, Pugachev’s cobras, and mixed flips. The obtained
experimental results provide compelling evidence of the effectiveness of the two proposed methods
to compensate for the undesired effects induced by aerodynamic-coefficient and torque-latency
variations. Furthermore, the experimental data demonstrate that both adaptive schemes significantly
improve the flight performance of the quadrotor UAV during the execution of aerobatic maneuvers,
compared to those achieved with a controller that disregards the LTV actuator dynamics induced
by high-speed aerodynamic effects. The suitability of the time-varying approach used to model the
influence of high-speed local flow fields on the dynamics of the controlled UAV was indirectly validated
through data obtained during the aerobatic-flight experiments presented here.

© 2021 Published by Elsevier Ltd.
1. Introduction

In recent years, vertical take-off and landing (VTOL) uncrewed
aerial vehicles (UAVs) have attracted significant research attention
and been used in a wide range of applications, including field
surveillance, search and rescue, aerial filming, and agriculture
spraying. The most salient characteristic of VTOL UAVs is that
they are, typically, fully actuated in attitude motion and under-
actuated in translational motion (Hua, Hamel, Morin, & Samson,
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2009; Lee, 2012); examples of this type of system are uncrewed
versions of the helicopter, the quadrotor, and the ducted-fan air-
craft. However, despite their increasing popularity, artificial aerial
vehicles are still outmatched by aerial animals regarding auton-
omy and flight capabilities. Specifically, VTOL UAVs do not exhibit
maneuver abilities comparable to those of natural flyers, which
can capture prey in flight, escape predators, and avoid obstacles
at extremely high velocities (Dudley, 2002). We believe that for
VTOL UAVs to achieve full autonomy, similar extreme flight capa-
bilities must be developed because these are required to accom-
plish missions and survive in real-life unstructured environments
full of unexpected challenges.

From a primarily theoretical perspective, a significant amount
of research on attitude and position control of VTOL UAVs, un-
der several different flight conditions, has been published. For
example, studies on position tracking control of VTOL flyers in the
presence of aerodynamic disturbances are presented in Cabecin-
has, Cunha, and Silvestre (2015), Hua et al. (2009), and Roberts
and Tayebi (2011); a global trajectory-tracking controller for
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AVs without translational velocity measurements is introduced
n Abdessameud and Tayebi (2010); a geometric method devised
o achieve quasi global position-tracking control of a quadrotor
AV is presented and discussed in Lee, Leok, and McClamroch
2010); and, an adaptive position controller designed to deal
ith the loss-of-thrust situation caused by component failure is
resented in Dydek, Annaswamy, and Lavretsky (2013). How-
ver, none of those research efforts considered the problem of
ontroller synthesis for high-speed aerobatic flight; furthermore,
he only verifications of those control methods were obtained
hrough either simulations or simple experiments in which the
ested UAVs remained in a near-hovering state characterized by
mall attitude-angle variations and slow angular velocities.1
On the other hand, many publications, which do not address

he theoretical complexities associated with high-speed aero-
ynamic phenomena, have presented experimentally-driven re-
earch aimed at enlarging the flight envelope of VTOL UAVs
rom steady hovering to aerobatic flight characterized by large
ttitude-angle variations and high angular velocities.2 For in-
tance, in the experiments presented in Lupashin and D’Andrea
2012) and Mellinger, Michael, and Kumar (2012), quadrotor
AVs were demonstrated to perform aerobatic maneuvers, such
s multi-flips and fast flights through tilted windows, employ-
ng an iterative learning control (ILC) strategy. However, stability
analyses of the closed-loop systems and proofs of convergence
of the learning parameters are not provided; therefore, it is
not entirely clear what conditions are required for those flight
controllers to function adequately. Additionally, ILC-based meth-
ods are not suitable to most real-life unpredictable scenarios in
which a controlled UAV does not have a second opportunity to
execute an aerobatic maneuver after a first attempt. In Chen and
Pérez-Arancibia (2016, 2017, 2020), we presented methods for
synthesizing controllers that enable high-speed aerobatic quadro-
tor flight (multi-flips in specific) and optimize the corresponding
tracking performance; the resulting controllers were validated
through both rigorous stability analyses and compelling exper-
imental results. However, in the research presented in those
articles, we did not consider the aerodynamic effects affecting the
system, which are magnified during extreme flight conditions,
as we assumed that the near-hovering flight assumption was
entirely valid.

The rapid translational and rotational motions required by a
controlled UAV to perform aerobatic flight drastically increase
the relative velocities, with respect to those experienced during
normal hovering flight, of the local incoming flows faced by
the propellers of the flyer.3 This phenomenon inevitably affects
he actuation dynamics of the system because the aerodynamic
oefficients of the propellers and the latency of the control torque
ecome time-varying, as discussed in Chen and Pérez-Arancibia
2018, 2019). In relation to this observation, it is important to
ote that aerial animals exhibit remarkable flight abilities while
erforming maneuvers in the presence of complex surrounding
low fields. For example, the fruit fly (Drosophila melanogaster) is
ble to perform a 90 ◦ banked turn in about 50ms with a yaw
cceleration of as high as 105 ◦

· s−2 (Fry, Sayaman, & Dickinson,
003); the barn swallow (Hirundo rustica) has been recorded ex-
cuting roll turns at rates of as high as 5 × 103 ◦

· s−1 (Shyy, Lian,

1 The term small attitude angle indicates that the angle between the vertical
pward direction and the direction of the thrust force generated by the
ontrolled VTOL UAV is less than 90 ◦; the term slow angular velocity indicates
that the magnitude of the controlled UAV’s velocity is less than 500 ◦

· s−1 .
2 The term large attitude angle refers to an angle between the vertical upward
irection and the direction of the thrust force generated by the controlled
TOL UAV that is larger than 90 ◦; the term high angular velocity refers to a
elocity magnitude that is larger than 500 ◦

· s−1 .
3 In this paper, we assume that the thrust force acting on the controlled
TOL UAV is entirely generated by its rotating propellers.
2

ang, Viieru, & Liu, 2007); and, the magnificent hummingbird
Eugenes fulgens) has been recorded performing escape maneu-
ers with a maximum roll rate of more than 4 × 103 ◦

· s−1 in
about 0.25 s (Cheng, et al., 2016). In fact, most aerial animals are
ble to execute complex high-speed controlled aerobatic flights
ithout stalling in the air or crashing to the ground, which
learly indicates that there still exists a performance gap between
rtificial and natural flyers.
Consistent with biological observations, we believe that for

TOL UAVs to acquire maneuver abilities comparable to those
xhibited by natural flyers, it is essential to develop methods
or synthesizing flight controllers that explicitly consider the
erodynamic effects generated by high-speed time-varying sur-
ounding flow fields. Unfortunately, to date, most research on
ynamic modeling and control of VTOL UAVs has overly simpli-
ied or neglected the aerodynamic effects affecting the controlled
ystems by assuming time-invariant flow fields, typically de-
cribed using constant aerodynamic coefficients (Bangura & Ma-
ony, 2012; Bristeau, Martin, Salaün, & Petit, 2009; Mahony, Ku-
ar, & Corke, 2012). This approach is reasonable and sufficiently
ccurate in the near-hovering flight case, characterized by slow
ranslational and rotational velocities with small attitude-angle
ariations. However, the assumption that the aerodynamic coef-
icients of the propellers are constant becomes highly improbable
n the aerobatic flight case. Furthermore, fluctuations of the load-
ng moments acting on the propellers, caused by high-speed
ariations of the surrounding local flow fields and associated
erodynamic parameters, can rapidly change the torque latency
nd introduce another time-varying term into the actuator dy-
amics. To address these issues, in Chen and Pérez-Arancibia
2018, 2019), we proposed a linear time-varying (LTV) actua-
or model that explicitly accounts for the effects of complex
low-field variations. Based on that model, we developed an adap-
ive control solution capable of compensating for undesirable
ehavior produced by the time-varying dynamics of the mod-
led actuators, thus significantly improving the empirical flight
erformance of the controlled VTOL UAV compared to those
btained with prior linear time-invariant (LTI) solutions. However,
e did not provide a rigorous stability analysis of the closed-loop
ystem. Similarly, in the research presented in Bisheban and Lee
2021), a neural-network-based model was applied to describe
he external wind disturbances affecting a UAV during flight;
he corresponding experimental control results, nonetheless, do
ot exhibit aerobatic flight performances comparable to those
eported in previous experimental papers (Lupashin & D’Andrea,
012; Mellinger et al., 2012).
The main contribution of this article is the introduction of two

ifferent adaptive control schemes developed to compensate for
he LTV actuator dynamics with unknown parameters that we
se to describe the time-varying aerodynamic effects affecting
VTOL UAV during extreme aerobatic flight. Also, we provide
nd discuss a mathematically-rigorous stability analysis of the
losed-loop adaptive systems. To begin, we introduce an LTV
odel of torque to account for the aerodynamic variations af-

ecting the actuator dynamics of the controlled VTOL UAV. Then,
e present and discuss the processes of synthesis and analysis
f the two proposed adaptive control methods. We derived the
irst method using Lyapunov’s nonlinear techniques, according to
hich the synthesized control and adaptation laws are generated

rom a single proto-Lyapunov function to guarantee the asymp-
totic stability of the closed-loop system. The second method, in-
spired by ideas in Krstić, Kanellakopoulos, and Kokotović (1995),
is based on a modular adaptive control scheme, according to
which the controller and adaptation laws are designed separately.
We conceived the two proposed adaptive schemes with the main
control objective of ensuring closed-loop stability while achieving
high flight performance.
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Because we expect the proposed controllers to drive VTOL
UAVs while executing aggressive aerobatic maneuvers in frac-
tions of a second, it is crucial to counteract the adverse effects
affecting the transient performance of the system even before
the adaptive parameters have converged. To test this capability,
we experimentally implemented both adaptive control schemes
on a quadrotor UAV to perform three different types of repre-
sentative maneuvers: triple-flips, Pugachev’s cobras, and mixed
flips. The empirical data univocally indicate a significant improve-
ment in flight-control performance in all the experimental cases,
compared to the results obtained with a high-performance LTI
controller that disregards the time-varying characteristic of the
actuator dynamics. Specifically, both adaptive control methods
drastically reduced undesired angular-velocity oscillations and
overshoots. Last, we compare the experimental control errors ob-
tained with the two proposed controllers, which achieve similar
performance values.

For clarity and completeness, we briefly state the research
contributions presented in this article relative to our prior pub-
lications. In the research presented in Chen and Pérez-Arancibia
(2016, 2017, 2020), we did not consider the aerodynamic effects
acting on the actuator dynamics of the controlled VTOL UAVs
during aerobatic flight and only used the nominal open-loop
dynamics for controller synthesis. Moreover, in the research pre-
sented in Chen and Pérez-Arancibia (2018, 2019), we did not
provide rigorous stability analyses of the resulting closed-loop
systems. In clear contrast with our previous work, the approach
introduced in this article explicitly consideres the high-speed
time-varying aerodynamic effects affecting the actuation of the
controlled VTOL UAVs when developing the two proposed meth-
ods for synthesizing adaptive controllers. Furthermore, here, we
present rigorous stability analyses and provide the conditions
that guarantee the global asymptotic stability of the closed-loop
systems.

2. Preliminaries

2.1. Notation

We denote scalars using regular lowercase or uppercase sym-
bols, e.g., a or 8; we denote vectors using bold lowercase sym-
bols, e.g., a; we denote matrices using bold uppercase symbols,
e.g., A; and, we denote quaternions using bar-crossed bold low-
ercase symbols, e.g., —q. The symbol ∗ denotes the quaternion
roduct, e.g., —q ∗ —p. The symbol ≻ (or the nonstrict form ⪰)

denotes a component-wise inequality between vectors and a
matrix inequality between Hermitian definite matrices. For a set
S , the interior of S is denoted by S̊ , and the boundary of S is
denoted by ∂S . We write the difference between two sets as
A \ B = {x : x ∈ A and x /∈ B}. The operator λmin{·} extracts the
minimum eigenvalue of a symmetric matrix; the operator | · |

computes the absolute value of a scalar; the operator | · |2 com-
putes the Euclidean norm of a vector; the operator ∥ · ∥F computes
the Frobenius norm of a matrix; the operator tr{·} computes the
trace of a square matrix; the operator sgn{·} extracts the sign
of a real number; and, the symbol ∇ denotes the del operator.
Last, we denote the set of real numbers using the symbol R, any
generic identity matrix with I , and time with t . In particular,
t = t0 indicates the time at which a given aerobatic maneuver
starts.

2.2. A class of aerobatic maneuvers

The aerobatic maneuvers of the class considered in this pa-
per are defined by fast sequential rotations about a single axis
or multiple axes, during which the translational motion of the
 p

3

controlled VTOL UAV remains in free fall and open loop. The
rotation axes of the sequential subrotations used in an aero-
batic maneuver are defined by a sequence of k body-fixed unit
vectors sorted in the order of occurrence as {a1, a2, . . . , ak},
and the sequence of rotation angles for the corresponding sub-
rotations is denoted by {81,82, . . . ,8k}. Furthermore, the se-
quence of maximum angular speeds of the corresponding subro-
tations is denoted by

{
8̇max,1, 8̇max,2, . . . , 8̇max,k

}
. Accordingly,

the angular-velocity reference ωd is composed of a sequence of k
signals

{
ωd,1,ωd,2, . . . ,ωd,k

}
, sorted in order of occurrence. We

formalize these ideas through a definition.

Definition 1. The aerobatic maneuvers for VTOL UAVs of the
generic class considered in this paper start from an initial atti-
tude corresponding to a thrust force with a direction that points
vertically upward and end at a final state with exactly the same
attitude as that of the initial state. In the most generic case,
a maneuver is composed of a sequence of subrotations. Dur-
ing each subrotation, the vehicle rotates about the correspond-
ing body-fixed axis ai, thus accumulating an additional rota-
tion angle 8i, without surpassing the maximum rotation speed
8̇max,i, for i ∈ {1, 2, . . . , k}. The reference signal for each subro-
tation, ωd,i(t), for i ∈ {1, 2, . . . , k}, starts and ends at zero. The
complete angular-velocity reference expressed in the body-fixed
frame defined in Section 3, ωd(t), is chosen to be continuously
differentiable.

From Definition 1, it follows that
∫ tf,i
ti,i

⏐⏐ωd,i(t)
⏐⏐
2 dt = 8i, where

ti,i and tf,i are the initial and final times of the subrotation i,
and maxt∈[ti,i:tf,i]

{⏐⏐ωd,i(t)
⏐⏐
2

}
= 8̇max,i. The translational motion

is assumed to be the free-fall state because the direction of the
thrust force changes extremely fast4 between the upward and
downward orientations, and gravity is assumed to be the only
external force acting on the UAV. Translational drift on the hori-
zontal plane may exist but remains bounded due to the extremely
short duration of the maneuver.

2.3. The aerobatic-maneuver process

The entire process of an aerobatic maneuver can be divided
into three phases: climb, maneuver execution (ME); and descent
and restabilization (DR). At the start, the controlled UAV hovers
at a preset position. After receiving the command to perform the
maneuver, the UAV starts climbing a preset distance to reach an
initial upward speed, which helps to reduce the descending speed
at the end of the maneuver. Subsequently, the vehicle enters
the ME phase and executes the maneuver while its translational
motion stays in the pure free-fall state. After the maneuver is
completed, the direction of the thrust force generated by the pro-
pellers returns to the upward orientation, and the vehicle resta-
bilizes its attitude to hover and stop descending. More details
regarding this process can be found in Chen and Pérez-Arancibia
(2020). During the climb and DR phases, the VTOL UAV stays
at a near-hovering attitude state, which can be regulated using
simple control laws. Consistently, here, we focus on the synthesis
of controllers for the ME phase. The stability and performance
analyses of the controller while switching between phases can
be found in Chen and Pérez-Arancibia (2020).

3. Problem statement

3.1. Dynamics of a VTOL UAV with LTV actuation

An example of a VTOL UAV, a 28-g quadrotor aircraft, is shown
in Fig. 1. In this case, the arbitrarily-chosen inertial frame of

4 During a maneuver, which is completed in less than 1 s, a controlled UAV
roduces angular speeds with values greater than 1000 ◦

· s−1 .
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Fig. 1. A quadrotor UAV and frames of reference. Here, N = {O0, n1, n2, n3}

enotes the inertial frame, B = {OB, b1, b2, b3} denotes the body-fixed frame,
and r is the position of the UAV’s center of mass relative to the origin O0 .

reference is denoted by N = {O0, n1, n2, n3} and the body-fixed
frame of reference, with its origin located at the flyer’s center
of mass, is denoted by B = {OB, b1, b2, b3}. The globally-defined
nonlinear dynamics of the system, including an LTV actuation
dynamics, is represented as

mr̈ = −mgn3 + ftb3, (1)

—̇q =
1
2 —q ∗—p, (2)

J ω̇ = −ω × Jω + τ, (3)

τ̇ = −a(t)τ + b(t)u, (4)

where m is the mass of the vehicle; J = diag {j11, j22, j33} is the
moment of inertia matrix, written with respect to B; r denotes
the displacement of the UAV’s center of mass from the origin of
N ; ft is the magnitude of the total thrust force generated by the
UAV; —q is the quaternion that represents the attitude of B with
respect to N ; —p =

[
0 ωT

]T ; ω = [ω1 ω2 ω3]T is the angular
velocity of the UAV with respect to N with its components
expressed in B; τ = [τ1 τ2 τ3]T is the torque generated by the
ropellers of the UAV; and, u = [u1 u2 u3]T is the control signal.
The aerodynamic effects affecting the actuator dynamics are

escribed using (4), where the unknown time-varying parameters
(t) and b(t) represent the effects of time variations of torque
atency and the aerodynamic coefficients of the propellers, re-
pectively. By applying momentum theory analyses (Leishman,
006) and considering experimental observations (Chen & Pérez-
rancibia, 2019), the coefficients a(t) and b(t) are modeled as

a(t) = ψ1 + ψ2η1(ωa) + ψ3η2(ω̇a) = θT
1ζ, (5)

b(t) = ψ4 + ψ5η1(ωa) + ψ6η2(ω̇a) = θT
2ζ, (6)

where θ1 = [ψ1 ψ2 ψ3]T and θ2 = [ ψ4 ψ5 ψ6]T are vectors
with unknown constant parameters; ωa is the angular speed
about the rotation axis used in a given aerobatic maneuver; and,
ζ = [1 η1(ωa) η2(ω̇a)]T , with

η1(ωa) =
ωa√

1 + σ−2
1 ω2

a

, η2(ω̇a) =
ω̇a√

1 + σ−2
2 ω̇2

a

, (7)

where σ1 and σ2 are real positive constants. It is straightforward
to see that −σ1 < η1(ωa) < σ1 and −σ2 < η2(ω̇a) < σ2, for all

a and ω̇a. Additionally, we enforce that a(t) ≥ amin > 0 and
(t) ≥ bmin > 0, with amin, bmin ∈ R.
Overall, the model given by (4) is a simplification of the

omplex dynamic interactions of the UAV’s propellers with the
urrounding air flow that are generated during aerobatic flight.
onsequently, this modeling approach is useful for controller
4

synthesis while, to a significant extent, also allows us to cap-
ture the behavior of the aerodynamic effects influencing the
controlled UAV. However, it is not expected to accurately de-
scribe the actual aerodynamic phenomena associated with the
considered aerobatic flight problem.

3.2. Attitude-error kinematics

We define the ideal body frame, I , as the desired rigid attitude
kinematics required to follow the angular-velocity reference and
that is initiated with zero attitude error. Accordingly,

—̇qd =
1
2 —qd ∗ —̄p, with —̄p =

[
0 ω̄T

d

]T
, (8)

where —qd describes the attitude of I . Since the desired angular
velocity ωd is expressed in B, not I , we use the ideal angular
velocity ω̄d to specify (8), which has exactly the same components
as ωd but is expressed in I . Consistent with the quaternion-based
description of the UAV’s kinematics, the attitude control error is
represented using the quaternion —qe, which stores the informa-
tion about the attitude difference between B and I , and is given
by

—qe = —q
−1
d ∗ —q =

[
e0
e1

]
. (9)

Note that the vector part of —qe, e1, and the scalar part of —qe, e0,
contain the information about the Euler axis and rotation angle
required to reach I from B. Here, we denote this rotation angle
by 2e, which by definition is always nonnegative and satisfies
the quaternion identity e0 = cos 2e

2 . Last in this section, taking
the time derivative of (9) along the trajectories of (2) and (8), we
obtain that

—̇qe =

[
ė0
ė1

]
=

1
2

[
−eT1[ω − ω̄d]

e0[ω − ω̄d] + e1 × [ω + ω̄d]

]
. (10)

3.3. Control objectives

The main control objective is to compel the attitude and ve-
locity dynamics of the controlled UAV, specified by (2) and (3), to
track I and the angular-velocity reference ωd in the presence of
the LTV actuator dynamics in (4) with the unknown time-varying
parameters defined by (5) and (6). Due to the extremely short du-
ration of an aerobatic maneuver (normally, less than one second)
and its fast angular speed (with values as high as 2 × 103 ◦

· s−1),
it is more important to control the faster dynamics specified by
(3) than the slower dynamics specified by (2). Consistently, the
control objectives to be satisfied during an aerobatic maneuver
are mathematically specified as

• The signals ω, τ ∈ L∞.
• lim

t→∞
eω(t) = lim

t→∞
[ω(t) − ωd(t)] = 0.

• 2e remains bounded during aerobatic flight.

For details about the definition of L∞, see Ioannou and Fidan
(2006).

4. Controller design and stability analysis

We present two different adaptive control methods to achieve
the control objectives. The first method is a Lyapunov-based
adaptive scheme, for which both the controller and adaptation
law are derived using a single Lyapunov candidate function. The
second method is a modular adaptive scheme, for which the

controller and adaptation law are designed separately.
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.1. Lyapunov-based adaptive control

The chosen desired angular-velocity dynamics is given by
ω̇d + ωd × Jωd = τd, where τd is the nominal torque required to
chieve the desired dynamic behavior and ωd =

[
ωd,1 ωd,2 ωd,3

]T
is the angular-velocity reference. For consistency and simplic-
ity, ωd, τd ∈ L∞ and, additionally, ωd satisfies the requirements
in Definition 1. By defining f (ω) = ω × Jω and using its Taylor
expansion, it can be shown that

f (ω) = f (ωd) + Df (ωd)eω + g(t,ω), (11)

where Df (ωd) =
∂f (ω)
∂ω

⏐⏐⏐
ω=ωd

; eω = ω − ωd; and, g(t,ω) is the

high-order nonlinear residue of the expansion and has the com-
pact form g(t,ω) = h(eω) = eω × Jeω . Then, by subtracting the
esired angular-velocity dynamics from (3), we obtain that

J ėω + Df (ωd)eω + h(eω) = τ − τd. (12)

The method discussed in this section requires the definition
f a virtual torque input for (3). For this purpose, we utilize the
TI controller in Chen and Pérez-Arancibia (2017, 2020), which
as designed using the nominal dynamics of the controlled UAV
ithout considering the time-varying actuation dynamics of the
ystem. This LTI controller has the form

τa = − K 1eω + v + τd, (13)

v̇ = − λv + K 2eω, (14)

here K 1 and K 2 are diagonal positive-definite matrices that
atisfy the condition that λK 1 ≻ K 2, for 0 < λ ∈ R. The esti-
ated vector parameters are denoted by θ̂1 and θ̂2, and the
stimation errors are defined as θ̃1 = θ1 − θ̂1 and θ̃2 = θ2 − θ̂2.

The proto-Lyapunov function used for controller synthesis is
selected to be

V1 =
1
2
eTω Jeω +

1
2
vTQ 1v +

1
2
[τ − τa]

TQ 2[τ − τa]

+
1
2
θ̃
T
1K

−1
θ̃1

θ̃1 +
1
2
θ̃
T
2K

−1
θ̃2

θ̃2,

(15)

here Q 1, Q 2, Kθ̃1
, and Kθ̃2

are diagonal positive-definite matri-
es. Then, by taking the time derivative of V1 along the trajecto-
ies specified by (12) and (14), and substituting the virtual control
nput defined by (13) into the result, we obtain

V̇1 = −
[
eTω vT ]G(t)[ eω

v

]
+ eTω [τ − τa]

+ [τ − τa]T Q 2
[
−a(t)τ + b(t)u − τ̇a

]
− θ̃

T
1K

−1
θ̃1

˙̂
θ1 − θ̃

T
2K

−1
θ̃2

˙̂
θ2,

(16)

where

G(t) =

[
K 1 +

1
2

[
Df (ωd) + DT

f (ωd)
]

−
1
2

[
I + K T

2Q
T
1

]
−

1
2 [I + Q 1K 2] λQ 1

]
.

(17)
t is immediately clear that one of the closed-loop stability condi-
ions is that G(t) ≻ 0, for all t ≥ t0. In Chen and Pérez-Arancibia
2020), we show that G(t) remains in a convex hull defined by
two constant symmetric matrices, G1 and G2. Therein, we also
show that the condition that G(t) ≻ 0 is equivalent to satisfy-
ing that G1 ≻ 0 and G2 ≻ 0. Finding parameters K 1, K 2, and λ
that enforce the conditions G1 ≻ 0 and G2 ≻ 0 is a semidefi-
nite programming problem that can always be solved (Boyd &
Vandenberghe, 2004).

The control input u is chosen to have the form

u = b̂−1(t)
[
â(t)τ + τ̇ − Q−1e − K [τ − τ ]

]
, (18)
a 2 ω 3 a

5

where K 3 is a diagonal positive-definite gain matrix; b̂(t) is an
estimation of b(t) with the form b̂ = ψ̂4 + ψ̂5η1(ωa) + ψ̂6η2(ω̇a);
nd, â(t) is an estimation of the parameter a(t) with the form

ˆ = ψ̂1 + ψ̂2η1(ωa) + ψ̂3η2(ω̇a). The estimation errors are defined
s ã(t) = a(t) − â(t) = θ̃

T
1(t)ζ(t) and b̃(t) = b(t) − b̂(t) = θ̃

T
2(t)ζ(t

hen, by substituting the control input specified by (18) into (16),
e obtain that

V̇1 = −
[
eTω vT ]G(t)[ eω

v

]
− [τ − τa]T Q 2K 3 [τ − τa]

− θ̃
T
1

[
ζ [τ − τa]T Q 2τ + K−1

θ̃1

˙̂
θ1

]
+ θ̃

T
2

[
ζ [τ − τa]T Q 2u − K−1

θ̃2

˙̂
θ2

]
.

(19)

The estimates â(t) and b̂(t) must satisfy that â(t) ≥ amin and
b̂(t) ≥ bmin, for the real positive constants amin and bmin. To
nforce these conditions, the parameters

{
ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5, ψ̂6

}
re set to be bounded according to the rules

γmin,1 ≤ ψ̂1 ≤ γmax,1, −γ2 ≤ ψ̂2 ≤ γ2, −γ3 ≤ ψ̂3 ≤ γ3,

(20)

γmin,4 ≤ ψ̂4 ≤ γmax,4, −γ5 ≤ ψ̂5 ≤ γ5, −γ6 ≤ ψ̂6 ≤ γ6,

(21)

where, γmin,1, γmax,1, γ2, γ3, γmin,4, γmax,4, γ5, and γ6 are real
ositive constants; the relationships γmin,1 − σ1γ2 − σ2γ3 ≥ amin

nd γmin,4 − σ1γ5 − σ2γ6 ≥ bmin must also be satisfied. In
his case, we apply the parameter projection algorithm (Ioannou
Fidan, 2006; Ioannou & Sun, 2012) to ensure that θ̂1 and

ˆ2 generate the conditions specified by (20) and (21). Accord-
ngly, two convex sets are defined, S1 =

{
θ̂1 ∈ R3

| g1
(
θ̂1
)
≤ 0

}
nd S2 =

{
θ̂2 ∈ R3

| g2
(
θ̂2
)
≤ 0

}
, where

g1
(
θ̂1
)

=

(
2ψ̂1 − γmin,1 − γmax,1

γmax,1 − γmin,1

)2n
+

(
ψ̂2

γ2

)2n
+

(
ψ̂3

γ3

)2n
− 1,

(22)

g2
(
θ̂2
)

=

(
2ψ̂4 − γmin,4 − γmax,4

γmax,4 − γmin,4

)2n
+

(
ψ̂5

γ5

)2n
+

(
ψ̂6

γ6

)2n
− 1,

(23)

nd n can be chosen to be any positive integer.
Consistently, the resulting adaptation laws used to compute θ̂1

nd θ̂2 are specified by

˙̂
θ1=

⎧⎨⎩ ξ1, if θ̂1 ∈ S̊1, or if θ̂1 ∈ ∂S1 and ∇gT
1 ξ1 ≤ 0;

ξ1 − Kθ̃1

∇g1∇gT1
∇gT1 K

θ̃1
∇g1

ξ1, otherwise. (24)

˙̂
θ2=

⎧⎨⎩ ξ2, if θ̂2 ∈ S̊2, or if θ̂2 ∈ ∂S2 and ∇gT
2 ξ2 ≤ 0;

ξ2 − Kθ̃2

∇g2∇gT2
∇gT2 K

θ̃2
∇g2

ξ2, otherwise. (25)

The variables used in the computation of the projections are
defined as ξ1 = −Kθ̃1

ζ[τ − τa]
TQ 2τ and ξ2 = Kθ̃2

ζ[τ − τa]
TQ 2u.

Note that when ˙̂
θ1 = ξ1 and ˙̂

θ2 = ξ2, V̇1 is negative definite, with
the form

V̇1 = −
[
eTω vT ]G(t)[ eω

v

]
− [τ − τa]T Q 2K 3 [τ − τa] . (26)

Thus, considering that V1 is positive definite and V̇1 ≤ 0, it follows
that V ∈ L , which implies that e , v, and [τ − τ ] ∈ L . Also,
1 ∞ ω a ∞
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ntegrating both sides of (26), we obtain that

min
t

{λmin {G(t)}}
∫

∞

t0

(
|eω|

2
2 + |v|22

)
dτ

+ λmin {Q 2K 3}

∫
∞

t0

|τ − τa|
2
2 dτ ≤ V1(t0) − V1(∞).

(27)

ecause V1(t0) and V1(∞) are bounded, we can also conclude that
eω , v, and [τ − τa] ∈ L2, and from (4), (12), (13), (14), and (18),
t follows that ėω , v̇, and

[
τ̇ − τ̇a

]
∈ L∞. Furthermore, using Bar-

alat’s lemma, we can prove that eω , v, and [τ − τa] converge
o zero asymptotically, which guarantees the stability of the
losed-loop adaptive system.
Lastly in this section, when the parameters θ̂1 ∈ ∂S1 with

gT
1 ξ1 > 0 and θ̂2 ∈ ∂S2 with ∇gT

2 ξ2 > 0, it can be shown that

V̇1 = −
[
eTω vT ]G(t)[ eω

v

]
− [τ − τa]T Q 2K 3 [τ − τa]

+ θ̃
T
1

∇g1∇gT
1

∇gT
1Kθ̃1

∇g1
ξ1 + θ̃

T
2

∇g2∇gT
2

∇gT
2Kθ̃2

∇g2
ξ2, (28)

which, considering that θ̃
T
1∇g1 < 0 and θ̃

T
2∇g2 < 0, implies that

V̇1 ≤ −
[
eTω vT ]G(t)[ eω

v

]
− [τ − τa]T Q 2K 3 [τ − τa] , (29)

and, as a consequence, that V̇1 ≤ 0. Then, using Barbalat’s lemma
one more time, it can be shown that eω , v, and [τ − τa] con-
verge to zero asymptotically. Therefore, we conclude that the
controller specified by (18), with the adaptation laws given by
(24) and (25), generates a stable closed-loop angular-velocity
error dynamics and the tracking error eω globally converges to
zero asymptotically.

4.2. Modular adaptive control

The adaptation law that we used to define the Lyapunov-based
adaptive scheme is constrained by the structure of the associated
Lyapunov function. To remove this limitation, we propose a mod-
ular adaptive control scheme in which the adaptation law can be
designed independently from the controller synthesis process. In
this case, the first step is to synthesize a controller that guaran-
tees that the closed-loop system is input-to-state stable (ISS) from
the multivariable estimation error to the system state.

As explained in Sections 3.1 and 4.1, the open-loop system can
be described as

J ėω + Df (ωd) eω + h(eω) = τ − τd, (30)

τ̇ = −a(t)τ + b(t)u. (31)

Next, we define a proto-Lyapunov function with the form

V2 =
1
2
eTω Jeω +

1
2
vTQ 1v +

1
2
[τ − τa]

TQ 3[τ − τa], (32)

here Q 1 ≻ 0 and Q 3 = q3I ≻ 0. Then, by taking the time deriva-
ive of V2 along the trajectories specified by (30) and (31), and
ubstituting the virtual torque given by (13) and (14) into the
esult, we obtain

V̇2 = −
[
eTω vT ]G(t)[ eω

v

]
+ eTω [τ − τa]

+ [τ − τa]T Q 3
[
−a(t)τ + b(t)u − τ̇a

]
.

(33)

urthermore, we define the control input to be

u = b̂−1(t)φ +
sgn {b(t)}

bmin

[
−ττTQ 3 [τ − τa]

− b̂−2(t)φφTQ [τ − τ ]
]
,

(34)

3 a t

6

where
φ = â(t)τ + τ̇a − K 4 [τ − τa] (35)

nd K 4 is a diagonal positive-definite matrix. Then, noting that
b(t)
bmin

≥ 1, defining z = τ − τa, substituting the control input

specified by (34) into (33), and defining x =
[
eTω vT zT

]T , we
arrive at

V̇2 ≤ − xTH(t)x −

(
τTQ 3z +

ã(t)
2

)2
−

(
b̂−1(t)φTQ 3z −

b̃(t)
2

)2
+

ã2(t)
4

+
b̃2(t)
4
,

(36)

and consequently, we further deduce that

V̇2 ≤ −xTH(t)x +
ã2(t)
4

+
b̃2(t)
4
, (37)

here

H(t) =

⎡⎢⎣ G(t)
−

1
2 I3×3

03×3

−
1
2 I3×3 03×3 Q 3K 4

⎤⎥⎦ ; (38)

ã(t) = a(t) − â(t); and, b̃(t) = b(t) − b̂(t).
It is clear that one of the stability conditions is that H(t) ≻ 0,

or all t ≥ t0. Also, similarly to the case of G(t), given the proper-
ies of H(t), it can be shown that H(t) remains in a convex hull
efined by two constant matrices. Therefore, for given matrices
1 and Q 3, and the signal ωd(t), the problem of finding the
ontroller parameters K 1, K 2, K 4, and λ to satisfy the condition
that H(t) ≻ 0 is a semidefinite programming problem that can
always be solved.

Proposition 1. Given matrices Q 1 ≻ 0, Q 3 ≻ 0, and H(t) ≻ 0, for
all t ≥ t0, the system specified by (30) and (31), with the control
nput in (34), is ISS with respect to

{
ã(t), b̃(t)

}
, for all t ≥ t0.

roof. See Appendix A.1. □

The conditions stated in Proposition 1 ensure that the system
tate, {eω, v, z}, remains bounded provided that the estimation
rrors ã(t) and b̃(t) remain bounded. Additionally, from (5) and
6), it is straightforward to see that ã(t) and b̃(t) are bounded
s long as θ̃1(t) and θ̃2(t) remain bounded. Next, we design the
daptation law for the control scheme. First, we substitute the
ontrol input specified by (34) into (4), which yields

ż = Az (t)z + W T(t)θ̃(t), (39)

here

θ̃ =

[
θ̃
T
1 θ̃

T
2

]T
; (40)

Az = −

[
K 4 +

b̂ sgn{b} q3
bmin

[
ττT

+ b̂−2φφT ]]
; (41)

W T
=

[
−τζT

[ sgn{b} q3
bmin

[
−ττT

− b̂−2φφT ]z + b̂−1φ
]
ζT
]
.

(42)

t is straightforward to see that Az (t) is exponentially stable5

ecause K 4 is positive definite and b̂ sgn{b}q3
bmin

[
ττT

+ b̂−2φφT ] is
ositive semidefinite as long as b̂(t) is guaranteed to remain
ositive using parameter projection.

5 This means that there exists a positive-definite symmetric matrix R such
hat RA (t) + AT (t)R ≺ 0, for all t ≥ t .
z z 0
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Then, applying the nonlinear swapping lemma (Krstić et al.,
1995) to rearrange (39), we obtain the filters

Γ̇ T
= AzΓ

T
+ W T , (43)

µ̇ = Azµ + W T θ̂ , (44)

where θ̂ =

[
θ̂
T
1 θ̂

T
2

]T
. In this way, using (39), (43), and (44), we

derive the static linear parametric model

z + µ = Γ T θ + ε̃ , (45)

where ε̃ is governed by the dynamics ˙̃ε = Az ε̃ , which implies
that ε̃ decays to zero exponentially fast and ε̃ ∈ L∞∩L2 because
Az is exponentially stable. Then, putting everything together, we
obtain an expression for the prediction error, ε, with the form

Γ T θ + ε̃ − Γ T θ̂ = Γ T θ̃ + ε̃ = z + µ − Γ T θ̂ = ε. (46)

Since the estimation error ε is linear in θ̃, we can use any gradient
algorithm or the least-squares method to estimate θ. In this
case, we use the recursive least-squares (RLS) algorithm as stated
in Ioannou and Sun (2012). Namely,

˙̂
θ = Proj{ϱ} = Proj

{
P Γε

1+ν tr{Γ T PΓ }

}
, (47)

Ṗ =

⎧⎨⎩ βP −
PΓΓ T P

1+ν tr{Γ T PΓ }
, if ∥P∥F ≤ Pmax;

0, otherwise.
(48)

The parameters β , ν, and Pmax are real positive constants, and
Proj{ · } denotes the projection operator in Krstić et al. (1995)
given by

Proj {ϱ} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϱ, if θ̂ ∈ S̊m or ∇gT

mϱ ≤ 0;[
I − c(θ̂)Km

∇gm∇gTm
∇gTmKm∇gm

]
ϱ,

if θ̂ ∈ Smδ \ S̊m and ∇gT
mϱ > 0.

(49)

ere, the matrix Km is positive definite, c(θ̂) = min
{
1, δ−1gm(θ̂)

}
,

Sm =
{
θ̂ ∈ R6

| gm(θ̂) ≤ 0
}
, Smδ =

{
θ̂ ∈ R6

| gm(θ̂) ≤ δ
}
, and

gm(θ̂) =

(
2ψ̂1 − γmin,1 − γmax,1

γmax,1 − γmin,1

)2n
+

(
ψ̂2

γ2

)2n
+

(
ψ̂3

γ3

)2n
+

(
2ψ̂4 − γmin,4 − γmax,4

γmax,4 − γmin,4

)2n
+

(
ψ̂5

γ5

)2n
+

(
ψ̂6

γ6

)2n
− 1,

(50)

here n can be any positive integer and δ is a real positive
arameter.
In the following proposition, we summarize the properties of

he RLS-based adaptation law with parameter projection.

roposition 2. Assume matrices Q 1 ≻ 0, Q 3 ≻ 0, and H(t) ≻ 0,
for all t ≥ t0; a control input with the form in (34); and, the
adaptation laws in (47) and (48). Then, the system specified by (30)
and (31) is guaranteed to satisfy that

• θ̃ ∈ L∞.

• ε and ˙̂
θ ∈ L∞ ∩ L2.

• eω , v, and z ∈ L∞.

Proof. See Appendix A.2. □

Last in this section, we state additional mathematical proper-
ties of the closed-loop system in the form of another proposition.

Proposition 3. All the signals associated with the closed-loop adap-
tive system consisting of the open-loop plant specified by (30) and
7

(31), the controller in (34), the filters in (43) and (44), and the adap-
tation laws in (47) and (48) are globally uniformly bounded provided
that the parameters K 1, K 2, K 4, Q 1, Q 3, and λ, and the reference
signal ωd(t) are chosen such that the conditions Q 1 ≻ 0, Q 3 ≻ 0,
and H(t) ≻ 0, for all t ≥ t0, are satisfied. Moreover, lim

t→∞
z(t) = 0,

lim
t→∞

v(t) = 0, and global asymptotic tracking is achieved. Namely,

lim
t→∞

eω(t) = lim
t→∞

[ω(t) − ωd(t)] = 0. (51)

Proof. See Appendix A.3. □

4.3. Attitude analysis

In this section, we show that the attitude error remains
bounded during the execution of an aerobatic maneuver con-
trolled with either of the two proposed adaptive schemes. As
stated in Section 3.2, 2e denotes the rotation angle about the
corresponding Euler axis to reach I from B. Here, the Euler
axis of rotation is specified using the coordinate unit vector ae,
which has its components expressed in both B and I . Thus,
from basic quaternion algebra, we know that e0 = cos 2e

2 and
e1 = − sin 2e

2 · ae, which, using (10), allows us to conclude that

ė0 = −
2̇e

2
sin

2e

2
=

1
2
sin

2e

2
· aT

e [ω − ω̄d] . (52)

Hence, under the assumption that 2e ̸= 0, we obtain the rela-
tionship

2̇e = −aT
e [ω − ω̄d] = −aT

eeω, (53)
in which we use the property that the vectors ωd and ω̄d have
the same components. Next, recalling that |ae|2 = 1, directly from
(53), it follows that

2̇e ≤
⏐⏐2̇e

⏐⏐ ≤ |eω|2 . (54)

Furthermore, integrating both sides of (54), we obtain that

2e(t) ≤ 2e(t0) +

∫ t

t0

|eω(σ )|2 dσ , (55)

here t0 ≤ t ≤ tf, and t0 and tf denote the start and end
imes of the aerobatic maneuver, respectively. Here, 2e(t0) is the
ttitude-angle error at the start of the maneuver, which can be
egulated to zero during the climb phase described in Section 2.3
sing a simple LTI controller because in this condition the attitude
f the UAV remains near the hovering state.
Note that for a finite 2e(t0), it follows directly from (55) that

he attitude error, 2e(t), remains bounded during an aerobatic
aneuver because eω(t) was proven to remain bounded and
onverge to zero asymptotically as t → ∞. In other words, the
ynamics of the attitude error does not have a finite escape
ime. This conclusion is extremely relevant because, considering
hat the total duration of a maneuver in the class studied in
his paper is normally less than one second, it is important
o ensure that 2e(tf) is bounded and sufficiently small such
hat the vehicle can restabilize its attitude and stop its rapid
escent during the DR phase. This analytical finding is consis-
ent with experimental observations (see Section 5), according
o which both proposed adaptive control schemes produce very
mall final attitude errors 2e(tf) because the angular-velocity os-
illations and overshoot caused by undesired aerodynamic effects
re effectively counteracted by the controllers. Consistent with
his notion, we quantify controller performance during aerobatic
light using the performance figure of merit (PFM)

3 =

∫ tf

t0

|eω(σ )|2 dσ , (56)

hich is also an upper bound for the attitude control error.
learly, a smaller 3 represents a better performance.
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.4. Summary statements on the proposed control schemes

In Sections 4.1 and 4.2, we proposed two different adaptive
ontrol schemes capable of compensating for undesired aerody-
amic effects. The first method is Lyapunov-based. In this case,
he controller, specified by (18), and adaptation laws, given by
24) and (25), were derived from a single proto-Lyapunov func-
tion. The second method is modular. In this case, the control
input, given by (34), was designed such that the ISS property is
guaranteed, and the adaptation laws, given by (47) and (48), were
derived separately from the controller, using the static linear
parametric model specified by (45). Consistent with this modular
approach, there exist other potential adaptation laws for the same
parametric model.

5. Experimental results

5.1. Experimental platform

The quadrotor UAV used in the experiments presented here
is the Crazyflie 2.06 shown in Fig. 1, which weighs 28 g including
the battery, has a propeller-tip-to-propeller-tip distance of 14 cm,
and exhibits a maximum thrust-to-weight ratio of 1.9. During the
execution of an aerobatic maneuver, this quadrotor operates com-
pletely autonomously. Further details about the UAV platform
and experimental setup can be found in Chen and Pérez-Arancibia
(2016, 2017).

5.2. Maneuvers implemented experimentally

We implemented both the Lyapunov-based and modular adap-
tive controllers on the quadrotor platform to perform three differ-
ent types of aerobatic flights: a triple-flip maneuver, a Pugachev’s
cobra, and a mixed-flip maneuver. Additionally, the linear con-
troller specified by (13), which disregards the LTV actuator dy-
namics of the system, was implemented experimentally for the
purpose of comparison. The triple-flip maneuver is defined as a
1080 ◦ rotation about the b1 axis with a maximum angular speed
f 1800 ◦

· s−1; the Pugachev’s cobra is defined as a 180 ◦ rotation
bout the b1 axis, followed by a 180 ◦ rotation in the opposite
irection with a maximum angular speed of 1000 ◦

· s−1; and,
he mixed-flip maneuver is defined as a sequence of rotations
ccording to which the UAV rotates 140 ◦ about the b1 axis first,
hen 180 ◦ about the b2 axis, and finally 40 ◦ about the −b1 axis in
rder to return to a hovering state, while operating at a maximum
ngular speed of 1000 ◦

· s−1. Each of these three maneuvers is
performed in less than one second and, as a consequence, the high
angular speed required for its execution induces the generation of
significant and complex local airflow fields around the propellers
of the controlled UAV platform.

5.3. Torque estimation and implementation of the adaptive schemes

Directly from (3), the torques acting on the UAV are esti-
mated using the relationship τ = J ω̇ + ω × Jω, where the angu-
lar acceleration, ω̇, is calculated using the nonlinear derivative
method in Levant (2003), which is based on the utilization of
the measured angular velocity ω. The quadrotor UAV used in
he experiments has a miniaturized size and, therefore, limited
nboard computational resources. For this reason, to reduce the
eal-time computational cost and increase the sample-and-hold
requency of execution of the control loops, the projection algo-
ithms used to implement both adaptive methods were simpli-
ied to become component-wise saturations, as already discussed

6 https://store.bitcraze.io/products/crazyflie-2-0.
8

Fig. 2. Triple flips executed using three different controllers. (a) Exper-
imental data obtained using the linear controller specified by (13). The
corresponding PFM is 3 = 0.9391 rad. (b) Experimental data obtained using the
Lyapunov-based adaptive controller specified by (18). The corresponding PFM
is 3 = 0.6397 rad. (c) Experimental data obtained using the modular adaptive
ontroller specified by (34). The corresponding PFM is 3 = 0.6286 rad. Since, in
hese three cases, ωd,2(t) = ωd,3(t) = 0, for all t , these signals are not plotted.

n Chen and Pérez-Arancibia (2018). Additionally, to avoid satu-
ation of the propeller motors, the algorithms that compute the
ontrol signals in both adaptive methods, respectively specified
y (18) and (34), were implemented only on the axis that tracks
he nonzero-reference signals and the linear controller given by
13) was implemented on the other two axes that track the
ero-reference signals. This approach is reasonable because the
xes that track zero-reference signals encounter negligible un-
esired effects induced by time-varying aerodynamic coefficients
nd torque latency.

.4. Experimental results

During the flight experiments, the three aerobatic maneu-
ers described in Section 5.2 were performed employing the
yapunov-based and modular-based adaptive control schemes
resented in Section 4, and also the linear controller specified
y (13), which was implemented for comparison purposes. The
xperimental results corresponding to the three different ma-
euvers, obtained with the three different controllers, are shown
n Figs. 2, 3, and 4, respectively. In all three maneuver cases,
t is clear that the aerobatic performance obtained with the
inear controller reflects the inability of this method to counter-
ct noticeable angular-velocity oscillations and significant over-
hoot, which we believe are caused by unmodeled time-varying
ctuator dynamics resulting from aerodynamic-coefficient and
orque-latency variations. This linear controller was designed
sing the nominal dynamics of the system only, according to the
ethod in Chen and Pérez-Arancibia (2020), without considering

he LTV model of the actuator presented in Section 3.
In contrast with the results obtained using the LTI controller,

n all three maneuver cases, the aerobatic performance achieved
ith both adaptive controllers reflect their ability to significantly
ounteract undesired angular-velocity oscillations and overshoot.

https://store.bitcraze.io/products/crazyflie-2-0
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Fig. 3. Experimental Pugachev’s cobras executed using three different con-
trollers. (a) Data obtained using the linear controller specified by (13).
The corresponding PFM is 3 = 0.7413 rad. (b) Data obtained using the
Lyapunov-based adaptive controller specified by (18). The corresponding PFM
is 3 = 0.4625 rad. (c) Data obtained using the modular adaptive controller
specified by (34). The corresponding PFM is 3 = 0.4888 rad. Since, in these three
ases, ωd,2(t) = ωd,3(t) = 0, for all t , these signals are not plotted.

uantitatively, the Lyapunov-based adaptive scheme reduced the
FM values, 3, corresponding to the maneuvers in Figs. 2, 3, and
, with respect to those obtained with the linear controller by
1.88%, 37.61%, and 40.63%, respectively. Similarly, the modular
daptive scheme reduced the PFM values corresponding to the
hree studied maneuvers by 33.06%, 34.06%, and 39.81%, re-
pectively. These results also provide indirect evidence about the
orrectness and accuracy of the LTV model introduced to describe
ndesired aerodynamic effects affecting the actuator dynamics
f the controlled UAV. Video footage that shows experimental
esults obtained using both proposed adaptive control schemes
uring the execution of the three different aerobatic maneu-
ers discussed above can be seen in the supplementary movie
ccompanying this paper.
Clearly, the aerobatic-performance results obtained with both

daptive control schemes are similar to each other. However,
here exist many differences from the implementation perspec-
ive. In particular, the Lyapunov-based controller is significantly
ore efficient than the modular controller from the numerical
erspective because it requires the definition of a fewer num-
er of variables and the computational complexity is signifi-
antly lower. On the other hand, the modular scheme is flexible
nough to be implemented with different adaptation laws for
ifferent experimental situations while the adaptation law of the
yapunov-based method is fixed. Last, to test and demonstrate
he performance robustness of the proposed adaptive schemes,
e selected two flight experiments during which the tested UAV
as controlled to perform several consecutive aerobatic maneu-
ers. Specifically, Fig. 5(a) shows that the tested quadrotor UAV is
ble to continually perform eleven consecutive Pugachev’s cobra
aneuvers without crashing or stalling until its battery is entirely
ischarged, when controlled using the Lyapunov-based scheme.
imilarly, Fig. 5(b) shows that the tested quadrotor UAV is able
o continually perform twelve consecutive mixed-flip maneuvers
ithout crashing or stalling until its battery is entirely discharged,

hen controlled using the modular scheme.

9

Fig. 4. Experimental mixed flips executed using three different controllers.
(a) Data obtained using the linear controller specified by (13). The corresponding
PFM is 3 = 1.1497 rad. (b) Data obtained using the Lyapunov-based adaptive
ontroller specified by (18). The corresponding PFM is 3 = 0.6826 rad. (c) Data
btained using the modular adaptive controller specified by (34). The corre-
ponding PFM is 3 = 0.6920 rad. Since, in these three cases, ωd,3(t) = 0, for all
, this signal is not plotted.

. Conclusions

We presented two different adaptive control schemes to en-
ble a VTOL UAV to perform aerobatic maneuvers defined by
xtremely high angular and translational velocities, which gen-
rate complex interactions of the vehicle with the surround-
ng flow fields. First, we introduced an LTV model to describe
he actuator dynamics of the system, which explicitly accounts
or undesirable effects produced by aerodynamic-coefficient and
orque-latency time-variations caused by the high speeds asso-
iated with rapid aerobatic maneuvers. Then, we presented a
yapunov-based adaptive control scheme, which was developed
o explicitly compensate for the negative effects generated by
ime-varying actuator dynamics. Next, to add flexibility regard-
ng the adaptation law of the control scheme, we introduced a
odular adaptive approach, which was experimentally demon-
trated to achieve a flight performance similar to that obtained
ith the Lyapunov-based method. Furthermore, both proposed
daptive control methods were theoretically proven to stabilize
he closed-loop system globally. Last, we presented data, obtained
hrough three representative aerobatic-flight experiments, that
ompellingly demonstrate the effectiveness and robustness of
he two proposed adaptive control methods. These experimental
ata also indirectly provide evidence about the correctness and
ccuracy of the LTV model introduced to describe the actuator
ynamics of the system.

ppendix. Proofs of the propositions

.1. Proof of Proposition 1

From (37), it immediately follows that

V̇2 ≤ − (1 − ch) λh |x|2 −

(
chλh |x|2 −

1
4

(
ã2 + b̃2

))
, (A.1)

where λh = min
t≥t0

λmin {H(t)} > 0; and 0 < ch < 1. It is straightfor-

ward to see that V̇ ≤ 0 whenever |x| ≥
1 (

ã2 + b̃2
)
. Hence,
2 2 4chλh
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Fig. 5. Consecutive aerobatic maneuvers. (a) Data corresponding to eleven
onsecutive Pugachev’s cobras executed using the Lyapunov-based adaptive
ontroller specified by (18). (b) Data corresponding to twelve consecutive mixed
lips executed using the modular adaptive controller specified by (34).

rom TheoremC.2 in Krstić et al. (1995) and the Claim on Page 441
f Sontag (1989), the proposition follows immediately.

.2. Proof of Proposition 2

In this case, we first define the candidate Lyapunov function
V3 = θ̃

T
P−1θ̃ +

1
2c0

ε̃
T
ε̃ , where c0 = λmin {K 3}, and consider the

nstance when Ṗ ̸= 0. To continue, we take the time derivative of

3 and use the property that −θ̃
T
P−1Proj(ϱ) ≤ −θ̃

T
P−1ϱ (Krstić

t al., 1995, Lemma E.1) to obtain that

V̇3 ≤
θ̃

T
Γ
[
−2ε + Γ T θ̃

]
1 + ν tr

{
Γ TPΓ

} − β θ̃
T
P−1θ̃ − ε̃

T
ε̃ . (A.2)

hen, by substituting Γ T θ̃ = ε − ε̃ into (A.2), we get that

V̇3 ≤ −
εTε

1 + ν tr
{
Γ TPΓ

} − β θ̃
T
P−1θ̃ . (A.3)

n the other hand, when Ṗ = 0, we have that

V̇3 ≤
−2[ε − ε̃ ]

Tε

1 + ν tr
{
Γ TPΓ

} − ε̃
T
ε̃

≤
−εTε

1 + ν tr
{
Γ TPΓ

} −

⏐⏐⏐⏐⏐⏐ ε√
1 + ν tr

{
Γ TPΓ

} − ε̃

⏐⏐⏐⏐⏐⏐
2

2

≤
−εTε

1 + ν tr
{
Γ TPΓ

} .
(A.4)

herefore, considering that P−1 is positive definite, it follows that
θ̃ ∈ L∞ and

(
1 + ν tr

{
Γ TPΓ

})− 1
2 ε ∈ L2. Then, the boundedness

f θ̃ implies that ã and b̃ ∈ L∞. Also, directly from Proposition 1,
it follows that eω, v, and z ∈ L∞; and, consequently, that W and
Γ ∈ L∞. Furthermore, using the inequality∫

∞

t0

|ε|
2
2 dt ≤

⏐⏐1 + ν tr
{
Γ TPΓ

}⏐⏐
∞

∫
∞

t0

|ε|
2
2

1 + ν tr
{
Γ TPΓ

} < ∞,

(A.5)
t can be shown that ε ∈ L2. Similarly, we can prove that ˙̂

θ ∈ L2
y recalling that the projection algorithm in (47) satisfies that
roj(ϱ)TK−1

m Proj(ϱ) ≤ ϱTK−1
m ϱ, for all θ̂ ∈ Smδ (Krstić et al., 1995),

ε ∈ L2, and PΓ
1+ν tr{Γ T PΓ }

is bounded. Last, considering the previous

developments in this appendix, (47), and that ε = Γ T θ̃ + ε̃ , we
onclude that ε and ˙̂

θ ∈ L .
∞

10
.3. Proof of Proposition 3

From expressions (37) and (A.1), it immediately follows that
x|2 ≤ max

{
|x(t0)|2 , 1

4chλh

(
ã2 + b̃2

)}
. Also, it can be shown that

˜2 + b̃2 ≤
(
1 + σ 2

1 + σ 2
2

)
max

{⏐⏐θ̃1
⏐⏐2
2 +

⏐⏐θ̃2
⏐⏐2
2

}
, in which the term

ax
{⏐⏐θ̃1

⏐⏐2
2 +

⏐⏐θ̃2
⏐⏐2
2

}
is bounded by a uniform constant because

ˆ is bounded. Next, by using LemmaF.4 in Krstić et al. (1995),
e conclude that z − Γ T θ̃ ∈ L2. Also, it follows that Γ T θ̃ ∈ L2
ecause Γ T θ̃ = ε − ε̃ , in which both ε and ε̃ ∈ L2. Therefore,
∈ L2. Additionally, ż ∈ L∞ because the terms on the right side
f (39) satisfy that W T θ̃ and Azz ∈ L∞. Thus, from Barbalat’s
emma, we conclude that z → 0 as t → ∞. Furthermore, by
imply using the strictly passive property of the input-to-output
ystem from z to eω and v, we can show that eω and v ∈ L2. In
his case, we prove this property using the Lyapunov function
4 =

1
2e

T
ω Jeω +

1
2v

TQ 1v. First, we take the time derivative of V4
and obtain that

V̇4 ≤ − λg
(
|eω|

2
2 + |v|22

)
+ eTωz

≤ − λg |v|22 − (1 − c1)λg |eω|
2
2 +

1
4c1λg

|z|22 ,
(A.6)

where λg = min
t≥t0

λmin
{
G(t)

}
and 0 < c1 < 1. Last, integrating both

sides of (A.6), we get that

λg

∫
∞

t0

|v|22 dσ + (1 − c1)λg

∫
∞

t0

|eω|
2
2 dσ

≤ V4(t0) − V4(∞) +
1

4c1λg

∫
∞

t0

|z|22 dσ .
(A.7)

ow, by noticing that z ∈ L2 and V4(∞) is bounded because eω

nd v are bounded, we conclude from (A.6) that eω and v ∈ L2.
dditionally, using (14) and (30), it can be shown that ėω and

˙ ∈ L∞. Thus, by directly applying Barbalat’s lemma, we conclude
hat eω and v → 0 as t → ∞.

ppendix B. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.automatica.2021.109922.
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