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Abstract
We present a multiplatform control architecture to enable stable hovering flight and trajectory tracking for insect-scale
flapping-wing micro air vehicles (FWMAVs). In the proposed approach, flight controllers are synthesized by using modern
design techniques and applying the quaternion representation to describe the attitude dynamics of the controlled FWMAVs.
During controller synthesis, the nominal stability of the closed-loop system is analyzed and ensured employing nonlinear
Lyapunov methods. Given stringent fabrication, payload, size, and actuation limits at the insect scale, all subgram FWMAVs
developed to date have been underactuated and, therefore, operate under multiple constraints. This observation has motivated
us to develop an approach in which attitude is directly controlled by generating roll, pitch, and yaw torques through
asymmetrical flapping; however, positional control forces are generated by manipulating the attitude of the robot to align its
body-fixed aerodynamic-thrust vector along a desired direction. By leveraging this concept, we endow the proposed control
architecture with the desired multiplatform characteristic and flexibility required to achieve multiple different objectives. The
functionality, performance, and suitability of the proposed control approach were demonstrated experimentally using two
different FWMAVs: a new version of the RoboBee, a 75-mg two-wing robot originally developed at Harvard University; and
the Bee++, a 95-mg four-wing robot that we developed in the Autonomous Microrobotic Systems Laboratory (AMSL) at the
University of Southern California (USC). The use of a single control architecture to fly both robots allows an objective compa-
rison of their flight capabilities. The performance achieved by the Bee++ highlights the significant potential of its new design.

Keywords Artificial insects · Flapping-wing flyers · Microrobotic design and fabrication · Autonomous control systems ·
Nonlinear stability · Aerodynamic modeling
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1 Introduction

Since the early 2000s, the term flapping-wing micro air
vehicle (FWMAV) has been used to describe the notion of
insect-scale aerial robots that can use biologically-inspired
techniques to generate thrust and lift for flight as eventually
demonstrated in [1–8] and references therein. In this con-
text, as examples of pioneering non-flying flapping-wing
prototypes, we can include the robots in [9] and [10],
which introduced transmission mechanisms that replicated
some of the mechanical functions of the common blowfly
(genus Calliphora). An early example of a flying robotic
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insect is the ornithopter presented in [11], which has a
butterfly-inspired design and is passively powered by the
elastic potential energy stored in a rubber band. The first
fully-functional flapping-wing flyers are the single-actuator
two-wing fly-inspired robots in [12] and [13], which
were respectively demonstrated to counteract gravity and
hover under control but remained constrained to the ver-
tical degree of freedom, and the two-actuator two-wing
bee-inspired robot in [2–5] (the Harvard RoboBee), which
can fly unconstrained using feedback control. Presently, the
quest to develop a fully-autonomous subgram FWMAV is
still underway. This line of research is of great interest
because FWMAVs could significantly expand capabilities
in the areas of terrestrial and extraterrestrial exploration,
search and rescue, artificial pollination, reconnaissance, and
countless others. Additionally, these biologically-inspired
robots can serve as invaluable research tools to improve our
scientific understanding of real insects.

The microscopic dimensions of FWMAVs generate many
mechanical and electrical design challenges because most
traditional techniques employed to develop larger robots do
not translate well to the centimeter and millimeter scales.
At these small sizes, designs must be optimized for min-
imal complexity and maximum efficiency without overly
complicating the fabrication process. A very effective solu-
tion to the combined problem of microrobotic design and
fabrication is the smart composite microstructure (SCM)
method [14] and its later iterations [15], which enable the
integration of carbon fiber (CF) structural components with
flexible joints and piezoelectric actuators. This approach
eliminates the need for intricate mechanisms and leverages
high-precision laser micro-machining, thus enabling the
physical realization of designs that can produce the neces-
sary power and articulation for microrobotic flight. In fact,
the SCMmethod was the key element in the development of
the robots presented in [12] and [13], which eventually led
to the creation of the 75-mg Harvard RoboBee [2–5] that
employs two bimorph piezoelectric actuators to indepen-
dently flap its two wings through mechanical transmissions.

Theoretically, despite being underactuated, two-wing
flyers of the RoboBee class are fully controllable during
unconstrained flight through the modulation of body-pitch
and body-roll via asymmetrical flapping, and of body-yaw
by employing split-cycle flapping [16]. In flight experiments,
robots of this type are capable of adjusting the flapping patterns
of each wing to control body-roll and body-pitch; however,
they are fundamentally limited in their ability to produce
body-yaw torques for control due to the narrow bandwidths
of the piezoelectric-based mechanisms that map input
voltages to output flapping motions. To address this issue,
at the USC Autonomous Microrobotic Systems Laboratory
(AMSL), we recently introduced a new 95-mg four-wing
FWMAV, the Bee+ [8]. This robot uses four unimorph

piezoelectric actuators to independently drive its four wings,
thus substantially increasing the control authority of the
system compared to that of its two-wing counterparts. Addi-
tionally, each wing of the Bee+ is installed with a preset
inclination with respect to the plane defined by the leading
edges of the four composing wings while at rest, which is
the key design innovation that makes possible the experi-
mental control of the robot’s yaw degree of freedom (DOF).
Although still biologically inspired, this design also draws
ideas from the configuration and functionality of modern
quadrotor unmanned aerial vehicles (UAVs), which similarly
use four propellers to generate control forces and torques
[17–21]. In the research presented in this article, we used
a new advanced version of the four-wing Bee+, recently
developed at the AMSL, that we refer to as the Bee++ to
avoid confusion with the original model presented in [8].

As the science and technology required to create increas-
ingly better FWMAVs advance, a general methodology to
synthesize and implement robust multiplatform flight con-
trollers becomes necessary for two main reasons: (a) to
objectively compare the flight capabilities of different
FWMAV prototypes; and (b) to guide robotic design from
a control perspective. The latter reason is relevant because
the flight capabilities of an FWMAV depend on the posi-
tion and velocity references that can be accurately tracked
using feedback control. In the past few years, several control
methods for FWMAVs, with varying degrees of complexity
and success, have been proposed. For example, [3] dis-
cusses the development of a simple model-based linear
time-invariant (LTI) controller that was employed to sta-
bilize the three positional degrees of freedom, as well as
the pitch and roll angles, of the first two-wing Harvard
RoboBee prototype. Furthermore, [6] presents an adaptive
controller for this same robot, which was developed to com-
pensate for model-parameter uncertainty, internal noise, and
environmental disturbances. Following a different approach,
an intuitive model-free control architecture for two-wing
robots of the RoboBee class is presented in [4, 5]. That
controller was experimentally demonstrated to stabilize the
tested robots during hovering flight; however, its local atti-
tude formulation theoretically restricts nominal stability to
a relatively small region of attraction. Recently, an LTI
controller with a structure very similar to that in [3] was
implemented to fly the cross-shaped four-wing FWMAV
presented in [7]. This result indicates that generic multiplat-
form controllers for FWMAVs can be developed.

A common characteristic of all the controllers mentioned
in the previous paragraph is that the positional control-force
signal is generated by manipulating the attitude of the robot
to point the body-fixed thrust vector, generated by the flap-
ping wings, along a required direction to reach a desired posi-
tion [3–7]. By leveraging this concept, we developed a control
architecture that demonstrates the utility of a multiplatform
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approach with the flexibility to accomplish numerous con-
trol objectives. A key advantage of this proposed scheme
is its versatility, which is achieved by capitalizing on the
similarities between many different FWMAVs to ensure
broad applicability without eliminating valuable tuning and
customization. Additionally, drawing from [8], we intro-
duce a new approach that is more effective for control-
ling the yaw DOF of the Bee++ and similar four-wing
flyers, thus facilitating future advances in unexplored
domains of attitude control. For example, the design, imple-
mentation, and execution of aerobatic maneuvers.

The main contributions presented in this article are:
(a) the introduction of a new four-wing microrobotic design,
the Bee++, which is capable of producing a maximum thrust
force 2.3 times larger than that of the original Bee+ robot
in [8]; (b) a detailed general mathematical description of the
dynamics of the FWMAV class to which the RoboBee and
Bee++ belong; (c) a comprehensive description of the func-
tionality and detailed stability analysis of the proposed mul-
tiplatform control architecture; and (d) the presentation and
analysis of new flight experimental results that were obtained
using the RoboBee and new Bee++ platforms. The rest of
the paper is organized as follows. To provide background,
Section 2 briefly describes the robotic designs and fabrication
processes of the two FWMAV platforms used in the research
presented here. In particular, we highlight how robotic
design determines the set of feasible control structures for
the considered FWMAVs. Section 3 discusses the structure
and stability of the proposed multiplatform position-control
architecture. Section 4 presents results that demonstrate the
functionality, stability, and performance of the multiplat-
form control method through hovering and tracking flight
experiments. Lastly, Section 5 states conclusions about the
broader impacts of the proposed controller approach, areas
for improvement, and future research objectives.

Notation:

1) Scalars are represented by italic lowercase symbols,
e.g., q; vectors are represented by bold lowercase sym-
bols, e.g., q; matrices are represented by bold upper-
case symbols, e.g., Q; and quaternions are repre-
sented by bold crossed lowercase symbols, e.g., q.

2) The dot operator is used to denote time differentiation,
e.g., q̇ = dq

dt
. Consistently, additional dots represent

higher order derivatives.
3) Throughout the paper, the variable t denotes time.
4) The symbol s represents the complex variable

associated with the Laplace transform. Also, as
customary, 1

s
denotes the integrator operator.

5) The symbol × represents the vector cross-product
operation and the symbol ⊗ represents the quaternion
multiplication operation.

6) The symbol ‖ · ‖2 denotes the Euclidean norm of a
vector.

7) The symbol [ · ]T denotes the transpose of a matrix.
8) The operator tr {·} computes the trace of a matrix.
9) The operator sgn {·} computes the sign of a scalar.
10) The symbols >, <, ≥, and ≤ denote ordering

when used with scalars, and denote definiteness
relationships when used with matrices.

11) The summation and product operations of multiple
elements are represented by the

∑
and

∏
symbols,

respectively.

2 Robotic Design and Fabrication

The class of FWMAVs considered in this paper is composed
of flyers that flap their wings to generate yaw-axis-aligned
thrust forces in order to fly according to the normal hovering
mode as defined in [22]. Specifically, to analyze and
experimentally test the proposed control architecture, we
used a modified version of the Harvard RoboBee [3] and an
upgraded USCBee+ prototype [8] that we denominate as the
Bee++. These two FWMAVs are shown in Figs. 1(a) and (b),
respectively. While these two robots share many common
elements, they also have several unique design features.

2.1 Robotic Design of the RoboBee

The basic robotic design and components, the flapping
mechanism, and one of the two bimorph actuators of a
RoboBee prototype are depicted in Figs. 2(a), (b), and
(c), respectively. This flying microrobot has a wingspan
of 35mm and a mass of 75mg. Fig. 2 also defines the
yaw, pitch, and roll rotations of the robot’s body during
flight. As customary, the term roll-pitch-yaw corresponds
to the X-Y-Z rotation sequence with respect to an inertial
frame and, consistently, the term yaw-pitch-roll denotes the
z-y-x rotation sequence about the body-fixed axes defined
in Section 3. Also, throughout the paper, we refer to these
body-fixed axes as the roll, pitch, and yaw axes of the robot.

During flight, the rotational motion of each wing of a
RoboBee prototype is characterized by three simultaneous
modes: flapping, pitching, and stroke-plane deviation.
Flapping is the rotation of a wing about the yaw axis of the
robot and centered at the wing root, as depicted in Fig. 2(b).
In this illustration, the instantaneous flapping-angle signal
is denoted by ϕ. This flapping motion is actively and
independently generated through a four-bar transmission
mechanism that maps the corresponding actuator output
δ to ϕ. As depicted in Fig. 2(c), for the RoboBee, the
approximately-linear bidirectional output displacement δ is
produced with a bimorph piezoelectric actuator. Depending
on the instantaneous direction of rotation, the flapping
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Fig. 1 Photographs of the RoboBee and Bee++ models used in the
experiments. (a) A RoboBee prototype next to a US penny. This robot
weighs 75mg and has a wingspan of 35mm. (b) A Bee++ prototype
next to a US penny. This robot weighs 95mg and has a wingspan
of 33mm. Before performing flight experiments, thin CF spars and

reflective markers, which in total weigh about 5mg, are attached to the
robots. The spars provide collision protection and support the reflec-
tive markers that are used by a Vicon motion capture system to track
the positions and attitudes of the tested FWMAVs

motion of a wing can be split into upstroke and downstroke
phases. For the purpose of notational accuracy, in Section 3,
the flapping angle of the wing on the right is labeled as ϕ1

and the corresponding actuator output as δ1. Consistently,
the flapping angle of the wing on the left is labeled as ϕ2

and the corresponding actuator output as δ2
Pitching is the rotation of a wing about its leading edge,

which is parallel to the pitch axis of the robot during rest.
This rotation is produced passively by the interaction of
the wing with the surrounding air and is enabled by a
flexible hinge that connects the wing with the transmission
mechanism, as shown in Figs. 2(a) and (b). Each hinge
can be modeled as a rotational spring as described in
[24, 25]. Lastly, stroke-plane deviation is defined as the
rotation of a wing about the roll axis of the robot. A nonzero
stroke-plane deviation results in a flapping stroke that is not
in a plane parallel to that defined by the roll and pitch axes
of the robot. In the RoboBee, stroke-plane deviations are
caused by undesired deformations of the robotic structure
and, therefore, correspond to disturbances that affect the
closed-loop dynamics of the system.

In the RoboBee design, each of the two bimorph
piezoelectric actuators, with a total weight of 25mg,
consists of two layers of PZT ceramic material (depicted
in blue in Fig. 2(c)) and a center beam made of CF
(depicted in black in Fig. 2(c)). This bilayer configuration
enables the actuators to generate positive and negative
deflections with respect to the neutral position. The
conversion of electrical energy into mechanical work is

produced by synchronously applying voltages across the
faces of the two piezoelectric layers of the actuator
according to the method described in [13] and shown in
Fig. 2(c). Here, the voltage across the upper piezoelectric
layer is positive and held constant; the voltage across the
bottom layer, labeled as e, is positive and time-varying.
As discussed in Section 3, e is varied to modulate δ. This
excitation method allows for precise control of the induced
bending of each actuator and, thus, the instantaneous
flapping motion of each wing, ϕ, through a four-bar
transmission mechanism, as already described above. For
notational accuracy, in Section 3, the time-varying voltage
excitation on the right is labeled as e1 and the one on the left
is labeled as e2.

The passive wing-pitching response during flapping
partly depends on the geometric design and material
properties of the hinge that connects the wing to the
transmission; further discussions of these topics are pre-
sented in [24, 25]. All the functional components of the
robot are mechanically connected and structurally sup-
ported by a CF airframe, as depicted in Fig. 2(a). To
ensure that the tested RoboBee prototype can generate suf-
ficient thrust to fly under feedback control, we conducted
thrust-force-generation experiments in an iterative design
and fabrication process, using a sensor developed specifi-
cally to measure forces at the scale of this flyer [26]. The
resulting microrobot can produce a maximum thrust force of
approximately 1.34 mN, a value very similar to the 1.36mN
reported for the original Harvard prototype [3].
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Fig. 2 Schematic diagrams of the RoboBee and Bee++ designs.
(a) Diagram of the two-wing two-actuator RoboBee design showing
the main components of the system. (b) Transmission mechanism used
to map the instantaneous approximately-linear displacement gener-
ated by a bimorph piezoelectric actuator of the RoboBee, δ, into the
corresponding instantaneous flapping angle, ϕ. (c) Illustration of a
bimorph piezoelectric actuator used to drive one of the two wings of
a RoboBee prototype. This actuator has an upper piezoelectric layer
(shown in blue), a middle CF structural layer (shown in black), and
a bottom piezoelectric layer (shown in blue). During assembly, two
bimorph actuators are attached to the airframe of the microrobot by
their bases. Enabled by the two-layer configuration of the bimorph
design, the output δ of each actuator is bidirectional. That is, in terms
of this illustration, the bimorph actuator can deflect both upward and
downward. In this case, the two piezoelectric layers of each actuator
are electrically excited according to the bimorph with simultaneous
drive configuration described in [23], with e denoting the correspond-
ing positive exciting voltage used for control as specified by Eq. 11.

(d) Diagram of the four-wing four-actuator Bee++ design showing the
main components of the system. (e) Transmission mechanism used
to map the instantaneous approximately-linear displacement generated
by a unimorph piezoelectric actuator of the Bee++, δ, into the corre-
sponding instantaneous flapping angle, ϕ. (f) Illustration of a pair of
twinned unimorph actuators used to drive two of the four wings of
a Bee++ prototype. Each unimorph actuator has an upper piezoelec-
tric layer (shown in blue) and a bottom CF structural layer (shown in
black). During assembly, the two pairs of twinned unimorph actua-
tors are attached to the airframe of the robot by their bases. Given the
one-layer configuration of the unimorph design, the output δ is unidi-
rectional. Namely, in terms of this illustration, the unimorph actuators
can only deform in the upward direction. In the unimorph case, the
piezoelectric layer of each actuator is electrically excited according to
the alternating drive configuration described in [8], with e denoting the
corresponding positive exciting voltage used for control as specified
by Eq. 11

2.2 Robotic Design of the Bee++

The development of insect-scale four-wing flying robots has
been a long-standing challenge in the field of microrobotics.
The main difficulty that arises in the design of this type of
flyer is that each additional independently-controlled wing
requires the integration of another actuator into the robot.
Since conventional microscale actuators are relatively
heavy, adding more wings, and therefore more actuators,
typically increases the design complexity without improv-
ing the thrust-to-weight ratio. The first successful subgram
four-wing design was presented in [7], which is driven by four
independent bimorph piezoelectric actuators. That robot
weighs 143mg, can achieve a maximum thrust-to-weight
ratio of 2.8, and has been demonstrated to have good con-
trollability characteristics; however, it is almost twice as
heavy as a standard RoboBee prototype and its cross-shaped
configuration creates a rather large convex hull.

Following a different approach, we developed the
four-wing four-actuator Bee+, whose design and fabrication
process were first presented in [8] and further discussed
in [27]. This robot is the same size as the RoboBee
and only 27% heavier, with a mass of 95mg. A typical
Bee+ prototype has a wingspan of 33mm and exhibits an
estimated maximum thrust-to-weight ratio of 1.5. The key
innovation that made the physical realization of the Bee+

design possible is a new type of unimorph piezoelectric
actuator that weighs only 14mg. Actuators of this class
are fabricated in pairs of twins in order to facilitate
the manufacturing process. The Bee++ design used in
the research discussed here has the same mass as the
Bee+; however, due to several key design improvements,
this robot exhibits an estimated maximum thrust-to-weight
ratio of 3.4. The corresponding CAD design, four-actuator
flapping mechanism, and an illustration of a pair of twinned
unimorph actuators used to drive the robot are depicted

(a) (b) (c)

(d) (e) (f )
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in Figs. 2(d), (e), and (f), respectively. As in the RoboBee
case, ϕ denotes the flapping angle of a wing and δ denotes
the output displacement generated by the corresponding
unimorph actuator. Also, e denotes the time-varying voltage
applied across the single piezoelectric layer of the device.
In Section 3, we use the symbols ϕi , δi , and ei , for
i ∈{1, 2, 3, 4}, to denote the front-right, rear-right, front-left,
and rear-left variables, respectively. The yaw, pitch, and
roll rotations of the robot’s body, and the corresponding
axes, are defined exactly as in the case of the RoboBee
(Section 2.1).

From both the flight performance and controllability
perspectives, the Bee++ is significantly superior to any
other flying robot at its scale (below 100mg). Specifically,
three key elements endow the Bee++ design with unique
flight capabilities. The first element is that the four wings
of this robot are driven independently by two pairs of
twinned unimorph piezoelectric actuators. This innovation
in actuation is what makes possible the integration of
four independent actuators into the structure of the robot.
Each unimorph actuator is composed of only one active
layer of piezoelectric ceramic, which significantly increased
both the measured thrust-to-weight ratio and actuation
capabilities of the robot compared to those of the RoboBee,
while the total weight of the actuators was increased by
only 12% (from 50 to 56mg). As a direct consequence,
the control authority and maneuverability of the Bee++ are
unmatched by any other FWMAV. The second element
is that the combination of the four-wing configuration
of the robot and the flapping mode shown in Fig. 2(e)
significantly damps the rotational disturbances that affect
the yaw motion of the flyer, as supported by quasi-steady
aerodynamic analyses [8]. The third element is that, since
the Bee++ design has twice the number of wings as
its RoboBee counterpart, the aerodynamic loading acting
on each wing during hovering flight is significantly
lessened, thus improving the overall life expectancy of
Bee++ FWMAVs because the time required for the hinge
mechanisms to fatigue is extended.

With respect to the original Bee+ in [8], the enhanced
Bee++ design features three design modifications aimed to
improve lift generation and flight performance. The first
modification involves the wing profile, which was changed
as depicted in Figs. 3(a) and (b). In this case, by adjusting
the wing shape and location of the wing root, the moments
of inertia about the flapping and pitching axes were
reduced from 45.9mg ·mm2 to 36.7mg ·mm2 and from
2.3mg ·mm2 to 2.1mg ·mm2, respectively. The second
modification involves the mapping ratio between δ and ϕ of
the transmission-flapping mechanism, which was decreased
from 3509 rad ·m−1 to 2694 rad ·m−1 by increasing the
thickness of the intermediate CF layer, l, in the four-bar
mechanism of each transmission, as depicted in Fig. 3(c).

Fig. 3 Modifications of the Bee++ design with respect to the original
Bee+ prototype. (a) Profile of the wing used by the original Bee+

prototype to fly. (b) Profile of the wing used by the new Bee++

prototype to fly. (c) Four-bar mechanism used to map the actuator
output δ to the flapping angle ϕ in both FWMAVs considered in
this paper. By increasing the parameter l from 285 µm to 371 µm, the
transmission ratio from δ to ϕ was decreased from 3509 rad · m−1 to
2694 rad · m−1

The third modification involves the hinges that enable the
passive pitching of the four wings of the robot, whose design
was modified to have a stiffness of 2.3 µN ·m · rad−1, which
is about 1.64 times greater than the stiffness of the hinges
used in the original Bee+ design in [8].

These three design modifications were motivated by the
wing profile analysis in [28] and the results on dynamic
modeling of piezoelectrically-driven flapping-wing robots
presented in [29]. According to the logic and conclu-
sions therein, these three modifications should signifi-
cantly increase the overall stiffness of the actuation system,
thus widening its bandwidth. We verified this prediction
experimentally by measuring the bandwidths of the
wing-driving subsystems that map the voltages that excite
the actuators to the flapping amplitudes of the four wings
of the robot. In those experiments, we used a Phantom Miro
LAB310 high-speed camera and the experimental setup
described in [26]. The experimental data indicate that, on
average, the bandwidth of a typical driving subsystem used
to flap a wing of the tested Bee++ prototype is about 165Hz,
which represents an improvement of more than 50% over
that of the original Bee+ design.

As a consequence of its wider actuation bandwidth, the
Bee++ prototype used in the experiments presented in this
paper can generate an estimated maximum cycle-averaged
thrust force of 3.14mN, which is about 2.3 times greater
than the value of 1.37mN produced by the original Bee+

prototype. Consistent with the time-averaged quasi-steady
analyses in [8, 13, 24, 25] and references therein, for a sinu-
soidal flapping pattern, the improvement in cycle-averaged
thrust generation is explained by the fact that the magni-
tude of the produced thrust force is directly proportional
to both the square of the flapping amplitude and the
square of the flapping frequency. Namely, the wide actu-
ation bandwidth of the tested Bee++ robot enables larger
flapping amplitudes at higher frequencies when compared
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to those achieved by flyers of the RoboBee class and the
original Bee+, which results in larger thrust forces.

2.3 Fabrication

All the robotic components of the tested FWMAVs were
fabricated using the SCM method according to the general
procedure shown in Fig. 4. As seen in this illustration, the
RoboBee and Bee++ prototypes are made in five steps.
The airframes, transmissions, hinges, and wings of these
two robots are manufactured using very similar processes,
while the actuators of both robotic designs are sufficiently
dissimilar to require different fabrication methods. As
shown in Fig. 4(a), an airframe is micromachined from a
90-µm sheet of CF, laminated according to the 90-0-0-90 ◦
pattern (see Step 1 in Fig. 4(a)), using a diode-pumped
solid-state ultraviolet laser (DPSS, Photonics Industries
DCH-355-3) with a wavelength of 355 nm and a spot diame-
ter of 10 µm. CF has an extremely-high strength-to-weight
ratio, making it an ideal material to construct the basic
structures of FWMAVs. As depicted in Fig. 4(b), the
transmission and hinges of a prototype are laser cut
from a premachined composite laminate made of Kapton
polyimide film and CF sheets cured in the CF-Kapton-CF
configuration (see Step 2 in Fig. 4(b)). The precursive CF
sheets are manufactured by curing three layers of CF prepeg
in the 90-0-90 ◦ lamination pattern (see Step 1 in Fig. 4(b))
and have a thickness of about 70 µm whereas the Kapton
film has a thickness of 7.5 µm. The bonding between the
CF laminated sheets and the Kapton film is achieved using
sheets of adhesive (Dupont Pyralux FR), shown in light
yellow in Fig. 4(b), during a cure cycle. As shown in Step 4
of Figs. 4(a) and (b), after the final release cut shown in
Step 3 is completed, the resulting 2D parts are folded, glued,
and reinforced to create the 3D airframes and transmission
mechanisms of the robotic prototypes.

As shown in Fig. 4(c), wings are laser cut from
premachined laminates made of CF and Mylar polyester
film. The precursive CF sheet is manufactured by curing
three layers of CF prepeg in the 0-135-0 ◦ lamination
pattern (see Step 1 in Fig. 4(c)) and has a thickness of
about 70 µm. Mylar film, with a thickness of 2.5 µm, is
an ideal material to make the membranes for the wings of
FWMAVs because it is extremely light yet strong enough to
withstand high-frequency interaction with the surrounding
fluid during flapping. CF spars provide structural support
for the membranes and maintain a planar geometry. The
bonding between the CF and Mylar layers is also achieved
using a sheet of adhesive. During a cure cycle, pressure
and heat are applied using an automatic hydraulic press.
For curing transmissions, hinges, and wings, a pressure of
117 psi at 180 ◦C is applied for one hour. The precursory
structural CF laminates used to make the parts shown in

Figs. 4(a), (b), and (c) are fabricated by curing multiple
layers of CF prepeg (see Step 1), according to the lamination
patterns already described above, under a pressure of 45 psi
at a temperature of 130 ◦C for two hours. Depending on
the part being fabricated, the number and orientation of CF
layers are chosen to maximize structural functionality. For
airframes, transmissions, and hinges, CF provides structural
integrity while the Kapton layers enable folding during
fabrication and the creation of flexure joints that function as
rotational springs during operation.

As shown in Fig. 4(d), a bimorph piezoelectric actuator
for a RoboBee prototype is composed of two layers of
excitable PZT material separated by a structural passive
CF layer. In the fabrication process, first, two rectangular
sheets with a thickness of 127 µm, each containing a piece
of PZT ceramic material (shown in blue) and two pieces of
alumina (shown in white), are bonded to a 100-µm layer of
high-modulus CF prepreg through a first cure cycle. During
this first curing procedure, a pressure of 15 psi at 180 ◦C
is applied for two hours to the layers of material that are
pin-aligned to form a stack (see Step 2 in Fig. 4(d)). Next,
in a second cure cycle identical to the first (15 psi at 180 ◦C
for two hours), the two faces of the cured stack are bonded
to two additional premachined laminates of CF composite
(with a thickness of 27 µm) and two outer premachined
sheets of copper-clad FR4 (with a thickness of 137 µm) in
order to strengthen the PZT-alumina interfaces at the tip
and base of the actuator, and facilitate electrical connection,
respectively. Last, the bimorph actuators are released using
the laser cutter (see Step 3 in Fig. 4(d)).

As shown in Fig. 4(e), a pair of unimorph piezoelectric
actuators for a Bee++ prototype is composed of one layer of
excitable PZT material and one structural passive CF layer.
In the fabrication process, first, a single rectangular sheet
with a thickness of 127 µm, containing a flat piece of PZT
ceramic material (shown in blue) and two pieces of alumina
(shown in white), is bonded by the bottom to two 63-µm
layers of high-modulus CF prepreg through a first cure
cycle. As in the bimorph actuator case, a pressure of 15 psi
at 180 ◦C is applied for two hours to the layers of material
that are pin-aligned to form a stack (see Step 2 in Fig. 4(e)).
An additional bottom layer of alumina serves as a substrate
that maintains the flatness of the stack; between this piece
of alumina and the double layer of CF, we place a sheet of
release film in order to prevent undesired bonding. Next,
in a second cure cycle defined by the same parameters of
heat, pressure, and time as those used in the first procedure
(15 psi at 180 ◦C for two hours), the cured stack is bonded
by the upper face to an additional premachined laminate
of CF composite (with a thickness of 27 µm) and an outer
premachined sheet of copper-clad FR4 (with a thickness
of 137 µm) in order to strengthen the tip and base of the
actuator, and facilitate electrical connection, respectively.
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Fig. 4 Fabrication of the main robotic parts that compose the RoboBee
and Bee++ prototypes. Excepting the actuators, the principal compo-
nents of both robotic models are manufactured through very similar
procedures. In general, a prototype is built in five steps. In Step 1, mul-
tilayer laminates are manufactured through the application of pressure
and heat, or by assembling matching premachined pieces of material
previously cut using a DPSS laser. In the fabrication of transmis-
sions, hinges, and wings, additional permanent assembly features are
laser cut in this step. In Step 2, the laminates fabricated in Step 1 are
pin-aligned in stacks that are cured using heat and pressure to create

2D featured composites. In Step 3, 2D parts are released from the
composites manufactured in Step 2, using a DPSS laser. In Step 4, the
2D parts manufactured in Step 3 are folded, glued, and reinforced to
create the 3D components of the robotic prototypes. In Step 5, the
3D components manufactured in Step 4 are assembled to create the
robotic prototypes. As examples, (a), (b), and (c) depict the fabrication
processes of an airframe, a transmission, and a wing for a RoboBee
prototype. The fabrication processes of a bimorph piezoelectric actu-
ator for a RoboBee prototype and a pair of unimorph piezoelectric
actuators for a Bee++ prototype are depicted in (d) and (e), respectively

Step 1 Step 3 Step 4 Step 5Step 2

(a)

(b)

(e)

(d)

(c)

N/A

N/A

N/AN/A

N/A

N/A

N/A
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Last, the pairs of twinned unimorph actuators are released
using the laser cutter (see Step 3 in Fig. 4(e)). Further details
on the design and fabrication of unimorph actuators are
presented in [8].

In the case of both FWMAV designs, once all of the parts
are fabricated, these are manually assembled under a micro-
scope to create the robots (see Step 5 in Figs. 4(d) and (e)),
using built-in aligning features to ensure proper placement.
The pieces that compose an airframe have tabs and slots for
precise assembly while the actuators, transmissions, hinges,
and wings have mating protrusions and grooves to facilitate
positioning. Last, long thin spars, cut from a single sheet
of CF, are installed to provide ground stability on flat sur-
faces and protection in the event of a collision, as these spars
can function as shock absorbers. Also, as seen in Fig. 1, the
spars are used to support the reflective markers required by
the Vicon motion capture system to track the motions of the
tested FWMAVs during flight.

3 Controller Design

Feedback control is essential for FWMAVs to achieve sus-
tained stable flight, as extensively discussed in [1–8] and
references therein. Although liftoff can be accomplished
using open-loop actuation, the nonlinear dynamics of all
known FWMAVs are inherently unstable, which prevents
sustained flight without the use of feedback control. More-
over, geometrical imperfections introduced during the fab-
rication process and disturbances generated by the local
airflow surrounding the flyers cause unavoidable and unpre-
dictable destabilizing forces and torques. Only through the
use of precise sensors, quick-responding actuators, and an
effective control architecture can FWMAVs overcome the
effects of destabilizing forces and torques in order to accom-
plish complex control objectives. Overall, the control strat-
egy presented in this paper uses a two-phase model-based
approach to enforce rotational and positional stability. First,
the instantaneous measured and reference position signals
of the controlled robot are processed by an LTI control algo-
rithm to determine the thrust-force vector required to reach
a desired position in space. Next, taking into account that
the class of flyers considered in this paper can only gener-
ate thrust forces along their yaw axes, the information about
the thrust-force vector, along with that of the instantaneous
desired yaw angle of the robot, is used to determine the
attitude required to point the flyer along the direction of
the previously-computed thrust-force reference. Then, this
desired attitude and the measured attitude of the robot, in the
form of unit quaternions, are processed by a second control
algorithm that generates the torque signal used for attitude
control. Last, this control signal and the magnitude of the
thrust-force reference generated by the position controller

are exerted on the system using the piezoelectrically-driven
wings of the robot.

3.1 Dynamic Modeling of the FlyingMicrorobots

For the purposes of controller synthesis and simulation, a
simple rigid-body model is sufficiently accurate to represent
the dynamics of the robotic insects to be controlled.
As discussed in Section 3.2, the intricacies of force and
torque generation are generally dissimilar for different
FWMAVs. However, the role of forces and torques as the
inputs that excite the system dynamics can be described
mathematically in the same manner for different flyers.
Accordingly, we use identical models to represent the
dynamics of both the RoboBee and Bee++. First in the
modeling process, we define the frames of reference
and corresponding coordinate systems. The inertial frame,
denoted by N , is represented using the coordinate basis
{n1, n2, n3} centered at a fixed point denoted by O0. As
shown in Fig. 5, the vector n3 is aligned with the vertical
DOF. Also, a body-fixed reference frame, denoted by
B, is defined as shown in Fig. 5. The coordinate system
associated with B is defined using the basis {b1, b2, b3},
which is positioned at the center of mass (COM) of the
modeled robot, denoted by OB. Note that the vectors b1,
b2, and b3 correspond to the roll, pitch, and yaw axes of the
modeled robotic flyer.

The translational motion of the modeled flying micro-
robot can be formulated, by invoking Newton’s second law,
as

mr̈ = f b3 − mgn3, (1)

where m is the total mass of the robot; r = [r1 r2 r3]T is
the position of the robot’s COM relative to O0; f is the
magnitude of the cycle-averaged total thrust force generated
by the flapping wings; and g is the acceleration due to
gravity. Here, the thrust force generated by the modeled
robot is assumed to be perfectly aligned with the direction
of b3. That is, even though the direction of the instantaneous
total aerodynamic force generated by each wing and the
corresponding center of pressure are continuously shifting,
the thrust model used to specify Eq. 1 assumes that the
spatial center of force remains somewhere along the yaw
axis of the robot and that the cycle-averaged aerodynamic
total thrust remains aligned with this axis. Similarly, the
rotational dynamics of the modeled robot is given by

J ω̇ = τ − ω × Jω, (2)

where J is the inertia matrix of the robot, written with
respect to B; ω is the angular velocity of B relative to N ;
and τ = [τ1 τ2 τ3]T is the aerodynamic torque experienced
by the robot due to flapping. Consistent with the definition
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(a) RoboBee Design (b) Bee⁺⁺ Design
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Fig. 5 Frames of reference and basic modes of flapping used to model
the dynamics of RoboBee and Bee++ prototypes during flight. (a) The
illustration on the left shows the RoboBee design and the schematics
on the right show the modes of flapping used to generate torques about
the roll, pitch, and yaw axes. (b) The illustration on the left shows
the Bee++ design and the schematics on the right show the modes of

flapping used to generate torques about the roll, pitch, and yaw axes. In
both cases, the inertial frame of reference, {O0, n1, n2, n3}, is shown
in blue and the body-fixed frame of reference, {OB, b1, b2, b3}, is
shown in red. The vector position of the modeled robot’s COM, r , is
shown in green

of J , the coordinate vectors ω and τ are written with respect
to B.

In the case considered here, to describe the rotational
kinematics of the modeled flyer, it is convenient to use
unit quaternions due to their compact representation and
computational robustness when compared to matrix-based
descriptions of attitude [30, 31]. A unit quaternion is a
four-component one-column array that stores the attitude of
one frame of reference with respect to another. This avoids
issues that commonly arise when using representations
based on Euler angles, such as gimbal lock. Specifically,
consistent with Euler’s rotation theorem [31], in space, any
rotation or sequence of rotations of a frame about a fixed
point is equivalent to a single rotation, with a magnitude �,
about a fixed axis defined by a unit vector û that intersects
the fixed point of rotation. Namely, a quaternion q stores
this rotation information as

q =
[

cos �
2

û sin �
2

]

. (3)

Accordingly, using quaternion algebra and assuming a
perfectly-rigid body, the attitude dynamics of the modeled
robotic insect can be described as

q̇ = 1

2
q ⊗ p, (4)

where q represents the orientation of the body-fixed frame
relative toN and p is defined as

p =
[
0
ω

]

. (5)

Thus, rearranging Eqs. 1, 2, and 4 yields a first-order
nonlinear state-space representation with a total of thirteen
states. Namely,
ṙ = v,

v̇ = f
m

b3 − gn3,

q̇ = 1
2q ⊗

[
0
ω

]

,

ω̇ = J−1 (τ − ω × Jω) ,

(6)

where v denotes the velocity of the robot’s COM relative to
O0.

3.2 Aerodynamic Force and Torque Generation

In the cases discussed here, the magnitude of the total
thrust force, f , and the total aerodynamic-torque vector,
τ , are both generated via the controlled flapping of the
wings, which are attached to the transmission mechanisms
through flexible hinges that function as rotational springs,
as explained in Section 2. Consistently, during flapping, the
wings interact with the surrounding air and, as a result, pitch
passively, thus generating lift and drag force distributions
on the wing surfaces that directly depend on the magnitude
of the instantaneous angle of attack and velocity of the local
flow field [32]. The total instantaneous forces and torques
acting on the modeled robot due to sinusoidal flapping have
high-frequency components in the b1, b2, and b3 directions.
Fortunately, as discussed in [13] and [25], the dynamics
specified by Eq. 6 operate as a multi-channel lowpass
filter and, therefore, for the purposes of system modeling
and controller synthesis, we can estimate f and τ using
quasi-steady analysis and cycle averaging.
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Specifically, assuming a sinusoidal flapping pattern, the
magnitude of the cycle-averaged aerodynamic lift force
generated by the ith wing, f̄l,i , can be modeled as

f̄l,i = C1(ᾱ)ν2i ϕ2
0,iSw, (7)

where C1(ᾱ) is a lumped cycle-averaged aerodynamic
lift-force coefficient that depends on the cycle-averaged angle
of attack for the nominally dimensioned wing and hinge
of the corresponding modeled robot, ᾱ; νi is the flapping
frequency of the ith flapping wing and ϕ0,i is the amplitude
of the sinusoidal flapping pattern ϕi(t) = ϕ0,i sin (νi t),
corresponding to the ith wing, for i ∈ {1, 2} in the case of
the RoboBee and i ∈ {1, 2, 3, 4} in the case of the Bee++;
and Sw is the total nominal area of a wing corresponding
to the modeled robot. Further details can be found in [8].
Note that the same quasi-steady analysis followed to derive
Eq. 7 can be reproduced in the more-realistic case in
which the flapping patterns are not perfectly sinusoidal but
periodic, by simply using Fourier-series decomposition and
considering the principal components of the signals.

Furthermore, also using quasi-steady analysis, the
magnitude of the cycle-averaged aerodynamic damping
force acting on the ith wing, f̄d,i , can be modeled as

f̄d,i = C2(ᾱ)ϕ0,iνiωw,iSw + C3(ᾱ)ω̇w,iSw, (8)

where C2(ᾱ) and C3(ᾱ) are lumped cycle-averaged
aerodynamic drag-force coefficients that depend on ᾱ,
derived according to the analysis presented in [24, 25]; and
ωw,i is the magnitude of the yaw component of the ith
wing’s angular velocity. Note that as first discussed in [8],
given the symmetrical configurations of the robots of the
class considered here, the damping forces acting on a flyer
as a whole are, to a significant extent, mutually cancelled.
Consistently, for the purpose of modeling for controller
synthesis, we can assume that the magnitude of the total
thrust force generated by the ith wing of the modeled
flyer, f̄t,i , has the form in Eq. 7 and that the corresponding
force vector f̄ t,i is approximately perpendicular to the
corresponding wing’s stroke plane. Also, it is reasonable to
assume that f̄ t,i acts at the cycle-averaged center of force
of the corresponding wing, whose position relative to the
robot’s COM is denoted by d i . For a periodic and symmetric
flapping pattern, d i is determined by the midpoint of the
flapping stroke, the wing’s center of force, and the position
of the wing root.

For prototypes of the RoboBee class, the flapping wings
generate stroke planes that are parallel to the b1-b2 plane, as
shown using the schematic flapping mode at the bottom-right
in Fig. 5(a); therefore, f̄ t,i , for i ∈ {1, 2}, is approximately
aligned with the yaw axis, b3, of the flyer. On the other

hand, the Bee++ was designed to generate wingstroke
planes with angular offsets with respect to the b1-b2 plane,
as explained using the schematic flapping mode at the
bottom-right in Fig. 5(b). This results in the ability of each
wing to generate a force component that is parallel to the
b1-b2 plane in order to actively control the yaw DOF of
the robot. We refer to this approach as the inclined stroke
plane (ISP) method, which was first discussed in [8]. For
the two types of flyers considered in this article, the total
cycle-averaged thrust force aligned with the yaw axis and
acting at the robot’s COM can be estimated as

f =
n∑

i=1

f̄
T

t,ib3, (9)

where n is the total number of wings of the modeled
FWMAV. Consistently, the total cycle-averaged torque
applied about the robot’s COM can be estimated as

τ =
n∑

i=1

d i × f̄ t,i . (10)

From Eqs. 7, 9, and 10, it immediately follows that by
varying the amplitude or frequency of the flapping pattern
of each wing independently, the values of f̄t,i and d i , and
thus f and τ , can be varied. While the relationship between
f̄t,i and f is straightforward, more complex coordination is
required to produce the desired components of τ .

For a two-wing FWMAV, torque about the roll axis, b1,
of the flyer is generated by adjusting the difference between
the values of f̄t,1 and f̄t,2, as explained using the schematic
flapping mode at the top-right in Fig. 5(a). On the other
hand, torque about the pitch axis, b2, of the flyer is generated
by shifting the mean flapping angles of the wings to move
the points of application of f̄ t,1 and f̄ t,2 out of the b2-b3
plane, as depicted using the schematic flapping mode at
the middle-right in Fig. 5(a). Theoretically, torque about the
yaw axis, b3, of the controlled flyer can be produced using
a technique referred to as split cycling, according to which
the flapping speed during the upstroke (in black) versus
that of the downstroke (in gray) is varied and vice versa
[2], as explained using the schematic flapping mode at the
bottom-right in Fig. 5(a). However, thus far, effective expe-
rimental implementation of this method has been greatly
limited by the narrow bandwidths of piezoelectric-based
actuation mechanisms.

In the case of a four-wing FWMAV, roll torque
is generated by adjusting the differences between the
magnitudes of the f̄ t,i forces produced by the wings located
to the right and left sides of the b1-b3 plane, as explained
using the schematic flapping mode at the top-right in
Fig. 5(b). Similarly, pitch torque is generated by adjusting
the differences between the magnitudes of the f̄ t,i forces
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produced by the wings to the front and rear sides of the
b2-b3 plane, as explained using the schematic flapping
mode at the middle-right in Fig. 5(b). As in the case of
two-wing robots, the Bee++ can generate yaw torque via
split cycling but also by using the ISP method mentioned
above and discussed in [8], which is explained using the
schematic flapping mode at the bottom-right in Fig. 5(b).
Recent experimental results obtained at the AMSL using
a Bee++ FWMAV have shown that the ISP method is
significantly more effective than split cycling to control
the yaw DOF because ISP-based torque generation is not
limited by the narrow bandwidths of the piezoelectric
actuation mechanisms typically used to drive FWMAVs.

3.3 Actuator Model

In general, when designing a controller for a system
describable by Eq. 6, it is convenient to choose as control
inputs f and τ ; however, neither the RoboBee nor the Bee++

can generate these signals directly. For both microrobots,
the true inputs to the modeled dynamical system are the
oscillatory voltages used to drive the piezoelectric-based
flapping mechanisms. The mapping between these voltages
and the generalized forces generated by the flapping wings,
f and τ , can be modeled using a linear static mapping
with no dynamics or delays. In the case of the RoboBee, as
depicted in Fig. 2(c), each bimorph actuator is excited with
an instantaneous positive voltage signal of the form

ei(t) = γi sin (νi t) + εi, (11)

where i ∈ {1, 2}; γi is the amplitude of the signal; νi is the
frequency of the applied voltage and, due to linearity, the
flapping frequency of the corresponding wing; and εi is an
offset that determines the mean value of the flapping angle
and maintains the instantaneous value of ei(t) positive.
Immediately from Eq. 7, it follows that both γi or νi can
be used to modulate f and τ . However, in the control
scheme discussed here, νi is changed only for the purpose
of yaw-torque modulation via split cycling, while γi and
εi are continually adjusted for control during flight. In
theory, the appropriate values for νi during the upstroke
and downstroke can be found through open-loop trimming
flapping experiments.

Thus, considering Eqs. 7 and 11, we define the actuation
mapping-matrix for a RoboBee prototype as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (t)

τ1(t)

τ2(t)

τ3(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kamp 0 0 0

0 kroll 0 0

0 0 kpitch 0

0 0 0 kyaw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βamp(t)

βroll(t)

βpitch(t)

βyaw(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (12)

where kamp, kroll, kpitch, and kyaw are empirically-identified
constants; βamp(t) denotes the mean between the amplitudes
of the signals e1(t) and e2(t), 1

2 [γ1(t) + γ2(t)]; βroll(t)

denotes the difference between the amplitudes of both
exciting voltages, [γ1(t) − γ2(t)]; βpitch(t) denotes the
mean between the offsets of the signals e1(t) and e2(t),
1
2 [ε1(t) + ε2(t)]; and βyaw(t) denotes the deviation from
the preset frequency of flapping during split-cycle-based
yaw-torque generation. Thus, inverting the matrix specified
by Eq. 12 yields the mapping from control inputs to actuator
inputs that is used to control RoboBee prototypes. Namely,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βamp(t)

βroll(t)

βpitch(t)

βyaw(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
kamp

0 0 0

0 1
kroll

0 0

0 0 1
kpitch

0

0 0 0 1
kyaw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (t)

τ1(t)

τ2(t)

τ3(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)

In agreement with Eqs. 12 and 13, for the implementation
and execution of the flight controller introduced in the
next sections, the information contained in βamp(t), βroll(t),
βpitch(t), and βyaw(t) is used to compute, according to
Eq. 11, the voltages e1(t) and e2(t) that excite the two
microactuators of the the controlled robot.

In the case of the Bee++, as shown in Fig. 2(f), each uni-
morph actuator is excited with a voltage signal that is also
described by Eq. 11, for i ∈ {1, 2, 3, 4}, but only the ampli-
tude, γi , is varied for control purposes while the flapping
frequency, νi , and offset, εi , are held constant. Borrowing
from the literature on quadrotors [17, 18, 21], we assume
that the averaged magnitude of the thrust force generated
by the ith wing can be approximated as f̄t,i = kfγi , where
kf is an empirically-identified lumped constant. Addition-
ally, as illustrated in Fig. 5(b), yaw torques in the steering
plane are generated using the ISP method. Consistently, we
estimate the component of the ith aerodynamic force pro-
jected on the steering plane as f̄s,i = ksγi , where ks is also
an identified lumped constant. Thus, the resultant actuator
mapping-matrix takes the form
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (t)

τ1(t)

τ2(t)

τ3(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kf kf kf kf

−kfd1 −kfd1 kfd1 kfd1

kfd2 −kfd2 kfd2 −kfd2

ksd3 −ksd3 −ksd3 ksd3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ1(t)

γ2(t)

γ3(t)

γ4(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (14)

where dj , for j ∈ {1, 2, 3}, are the magnitudes of the
components of the vector locations of the wings’ centers of
force written with respect to B, d i , for i ∈ {1, 2, 3, 4}. From
the mechanics perspective, the values dj can be thought of
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as the magnitudes of the leverage arms associated with the
cycle-averaged forces generated by the flapping wings of the
flyer. Note that all the vectors d i are defined in terms of only
the three values dj , which is explained by the geometrical
symmetry of the Bee++ design. As with the RoboBee,
inverting the matrix in Eq. 14 provides the mapping from the
Bee++ control inputs, f and τ , to the actuator inputs, i.e.,
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ1(t)

γ2(t)

γ3(t)

γ4(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4kf

− 1
4kfd1

1
4kfd2

1
4ksd3

1
4kf

− 1
4kfd1

− 1
4kfd2

− 1
4ksd3

1
4kf

1
4kfd1

1
4kfd2

− 1
4ksd3

1
4kf

1
4kfd1

− 1
4kfd2

1
4ksd3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (t)

τ1(t)

τ2(t)

τ3(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

For implementing and executing the flight controller
presented in the following sections, the values of γ1(t),
γ2(t), γ3(t), and γ4(t) are used to construct, according to
Eq. 11, the voltages ei , for i ∈ {1, 2, 3, 4}, that excite the
four microactuators of the controlled Bee++.

3.4 Position Controller

The control architecture introduced in this paper, depicted
in Fig. 6, can be employed to automatically fly both the
RoboBee and Bee++, and also any other comparably rigid
FWMAV driven by similar actuation methods. As shown
in the diagram of Fig. 6, the position controller block
takes as inputs the position control error, re = rd − r ,
the measured attitude quaternion, q, and the desired
instantaneous yaw angle, ψd. In this scheme, rd and r are
the reference and measured positions written with respect
to N , respectively. The outputs generated by the position
controller are the magnitude of the total thrust command,
f , and the desired attitude quaternion, qd. The process of
control signal generation is executed as follows. First, the
algorithm computes the instantaneous thrust-force vector
written with respect to the inertial frame, f a, required to
compel the robot to track a desired trajectory, according to
the LTI law

f a(t) = Kp [rd(t) − r(t)] + K i

∫ t

0
[rd(τ ) − r(τ )] dτ

+Kd [ṙd(t) − ṙ(t)] + mr̈d(t) + mgn3, (16)

where Kp, K i, and Kd are diagonal positive-definite
gain matrices. Here, the first three terms correspond to
a standard proportional-integral-derivative (PID) control
architecture. The fourth term produces a direct open-loop
force corresponding to the desired trajectory in the absence
of control errors and external forces, and the last term
provides direct constant gravity compensation.

Due to the fixed stroke planes according to which
their wings are flapped during flight, RoboBee and Bee++

prototypes generate thrust forces that remain approximately
aligned with the directions of their yaw axes, b3. As
a consequence, an arbitrary force vector f a can not be
produced instantaneously. However, by maneuvering the
attitude of the controlled robot, b3 can be aligned with
the direction of f a, computed as specified by Eq. 16.
Specifically, to control the position of a flyer during flight,
the real-time controller in Fig. 6 computes the magnitude of
f a, f , and generates and tracks the unit quaternion qd that
contains the information of the attitude required to align the
yaw axis of the body frame, b3, with the direction of f a.
First, to extract the magnitude of the yaw component of f a,
the control algorithm simply calculates the inner product

f = f T
a b3. (17)

Next, in agreement with Euler’s rotation theorem [33], using
the yaw-angle reference signal, ψd, and the direction of f a,
the coordinate basis vectors, {bd,1, bd,2, bd,3}, of the desired
body-fixed frame are computed according to

bd,3 = f a

‖f a‖2
,

bd,1 = [− sinψd cosψd 0]T × bd,3

‖[− sinψd cosψd 0]T × bd,3‖2 , (18)

bd,2 = bd,3 × bd,1.

As long as the result of the bd,1 calculation is nonzero,
these basis vectors are used to form the rotation matrix
Sd = [bd,1 bd,2 bd,3], which maps any vector written with
respect to the desired frame of coordinates to N .
Furthermore, the information in Sd is expressed as a single
rotation �d about a unit axis ûd. The rotation angle is
calculated as

�d = arccos

(
tr{Sd} − 1

2

)

. (19)

And, consistently, the associated unit rotation axis, ûd,
is the normalized eigenvector of Sd corresponding to the
eigenvalue σ = 1. For �d �= 0, this eigenvector is given by

ûd = 1√
(3 − tr{Sd}) (1 + tr{Sd})

⎡

⎢
⎢
⎢
⎢
⎣

Sd,32 − Sd,23

Sd,13 − Sd,31

Sd,21 − Sd,12

⎤

⎥
⎥
⎥
⎥
⎦

, (20)

where Sd,ij denotes the {i,j}-entry of Sd. Last, these values
are used to generate the attitude-reference quaternion, qd,
according to

qd =
⎡

⎣
md

nd

⎤

⎦ =
⎡

⎣
cos �d

2

ûd sin
�d
2

⎤

⎦ . (21)

Note that this quaternion represents exactly the same
attitude of the desired frame of reference with respect to N
as specified by Eq. 18.
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Fig. 6 Block diagram of the proposed control architecture for
FWMAVs. In this scheme, the block labeled as plant represents the
dynamics of the controlled FWMAV, which generates as outputs the
position of the COM, r , and the attitude quaternion of the body-fixed
frame B, q. The inputs to this block are the actuator voltages ei ,
with i ∈ {1, 2} for the RoboBee and i ∈ {1, 3, 2, 4} for the Bee++. The
position controller block receives as inputs the position control error

re = rd − r , the desired yaw angle ψd, and the attitude quaternion
q. The outputs from this block are the total thrust-force magnitude f

and the desired attitude quaternion qd. The attitude controller block
receives as inputs the measured and desired attitude quaternions, q and
qd, and produces as output the control torque τ . The actuator mapping
block receives as inputs the control signals, f and τ , and produces as
outputs the actuator voltages ei

3.5 Attitude Controller

As shown in Fig. 6, the attitude controller takes as inputs
the attitude-reference quaternion, qd, and the quaternion
q, which represents the current measured attitude of
the body-fixed frame with respect to the inertial frame.
Using this information and quaternion algebra [31], the
attitude controller algorithm first computes the attitude-error
quaternion according to

qe = q−1 ⊗ qd, (22)

where qe = [me nT
e ]T represents the attitude of the desired

frame of reference relative to the body-fixed frame and q−1

is the quaternion inverse of q as defined in [31]. The terms
me and ne respectively denote the scalar and vector com-
ponents of the quaternion qe, in agreement with the gene-
ric definition specified by Eq. 3. The direction of the vector
ne is of particular importance because it represents the Euler
rotation axis between the body-fixed frame and the desired
frame of reference. After finding the error quaternion using
Eq. 22, the control algorithm computes the angular veloc-
ity of the body-fixed frame relative to the inertial frame in
body-fixed coordinates by inverting Eq. 4, which yields
[
0
ω

]

= 2q−1 ⊗ q̇. (23)

Similarly, the angular velocity of the desired frame relative
to the inertial frame in the desired coordinates, ω̂d, is given by
[
0
ω̂d

]

= 2q−1
d ⊗ q̇d, (24)

which can be converted to body-fixed coordinates, using
rotation matrices, according to

ωd = ST Sdω̂d, (25)

where S = [b1 b2 b3] is the rotation matrix that converts
vectors from body-fixed coordinates to inertial coordinates.

Last, utilizing me, ne, ω, and ωd, the attitude controller
calculates the torque in body-fixed coordinates required to
compel the robot to track the desired attitude, specified by
the quaternion qd in Eq. 21, using the LTI feedback law

τ = Kqne + Kω (ωd − ω) + J ω̇d + ω × Jω, (26)

where Kq and Kω are positive-definite controller gain
matrices. Here, the first term generates a proportional
torque component that is aligned with the rotation-error
axis, ne, thus directly acting to bring the body-fixed frame
into alignment with the desired frame. To ensure that this
contribution to the robot’s rotation occurs in the direction
aligned with the shortest rotational path, for real-time
implementation, the first term in Eq. 26 can be adjusted to
sgn{me}Kqne. The second term in Eq. 26 functions as a
derivative feedback component that generates torque that
directly depends on the rate of rotation error. The open-loop
torque term, J ω̇d, enables faster trajectory tracking and the
last term directly compensates for the gyroscopic coupling
torque. In the absence of model uncertainty, these last two
terms directly cancel the nonlinear dynamics of the system,
thus performing a form of feedback linearization.

By combining the attitude controller presented in this
section with the position controller discussed in Section 3.4,
and an actuator mapping such as that specified by Eq. 13
or 15 (according to the scheme in Fig. 6), the proposed
control architecture for flight control is completed. As
discussed in Sections 3.6 and 4, the control scheme as
a whole is capable of enforcing the closed-loop stability
of the dynamics of the controlled robots without the
need for the execution of open-loop tuning flight tests,
which represents a significant advantage of the proposed
architecture over other control methods that have been
used to fly microrobots of the class considered in this
article. In fact, thus far, open-loop system characterization,
trimming, and tuning have been unavoidable steps in
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the experimental implementation of flight controllers for
insect-inspired flapping-wing microrobots [3–8].

3.6 Stability Analysis

The stability of the closed-loop system, as modeled
by the block diagram in Fig. 6, can be assessed and
enforced by independently determining the conditions for
which the closed-loop attitude and position equilibrium
points are asymptotically stable, using a combination of
linear and nonlinear analysis techniques. The actuator
mapping is static and, therefore, does not greatly impact
the stability analysis. The proposed attitude controller in
Fig. 6, as discussed in Section 3.5, was primarily conceived
to fly FWMAVs. However, it shares many similarities
with quaternion-based attitude controllers for spacecraft,
already published in [30, 34, 35] and references therein.
Consistently, the closed-loop attitude stability analysis
presented here is mostly based on arguments in those
sources. In the case considered in this paper, a complete
state of the closed-loop attitude dynamics is composed
of the attitude tracking error, qe, and the angular-velocity
tracking error, ωe = ωd − ω. Thus, after differentiating
Eq. 22 and plugging Eq. 26 into Eq. 2, it is clear that
a closed-loop state-space representation of the attitude
dynamics of the system is given by

q̇e = 1

2

[
0
ωe

]

⊗ qe,

ω̇e = −J−1
(
Kqne + Kωωe

)
.

(27)

As shown in AppendixA, the vector function on
the right side of Eq. 27 is locally Lipschitz continuous,
and the seven-variable state-space system is autonomous
and has two fixed points. The first is given by the
vectors q∗

e = [1 0 0 0]T and ω∗
e = [0 0 0]T , and the second

corresponds to the same zero angular velocity but with
q
†
e = [−1 0 0 0]T . A detailed derivation of these two

equilibrium points is provided in AppendixB. Note that
both points represent the same attitude control error
and, therefore, convergence to either of them represents
convergence to the same physical orientation. However,
as shown in AppendixC, for the attitude control scheme
depicted in Fig. 6 and discussed in Section 3.5, regardless
of the values of the positive-definite controller matrices Kq

and Kω, the second equilibrium point is always unstable
and, for this reason, we analyze and discuss the stability and
convergence to the first equilibrium point,

{
q∗
e , ω

∗
e

}
, only.

The logic behind this approach is that since the fixed point
corresponding to me = −1 is unstable, if the system were
to reach this state, any small disturbance would force the
system to exit it and converge to

{
q∗
e , ω

∗
e

}
, provided that

asymptotic stability of this first fixed point is guaranteed

by the feedback controller. The apparently paradoxical
situation in which two mathematical states describing the
same physical condition of the system have contradictory
stability properties is the result of the quaternion sign
ambiguity, which has been thoroughly discussed in the
literature [31]. However, note that, as demonstrated in
Sections 3.7 and 4.1, this notational issue does not represent
a problem from an engineering perspective because the
proposed control scheme effectively and robustly functions
in both simulations and experiments.

Here, we enforce the asymptotic stability of
{
q∗
e , ω

∗
e

}

by invoking Lyapunov’s direct method with LaSalle’s
invariance principle as presented in Corollary 4.2 of [36].

Proposition 1 Let the user-defined reference signals, rd
and ψd, be smooth functions of time, and let Kq and Kω

be constant positive-definite matrices. Then, the equilibrium
point

{
q∗
e , ω

∗
e

}
, corresponding to q∗

e = [1 0 0 0]T and
ω∗
e = [0 0 0]T of the closed-loop state-space representation

of the attitude dynamics specified by Eq. 27, is asymptoti-
cally stable.

Proof Let V (qe, ωe) be the Lyapunov function (LF)
candidate defined as

V (qe, ωe) = 1

2
ωT
e K−1

q Jωe + 2(1 − me). (28)

It can be shown that, since rd and ψd are smooth functions
and Kq > 0, V (qe, ωe) satisfies the requirements of an LF
as specified in [36]. Namely, the smoothness of rd and ψd

ensures that the function V (qe, ωe) remains continuously
differentiable. Additionally, plugging (q∗

e , ω
∗
e) into Eq. 28

yields

V (q∗
e , ω

∗
e) = 0. (29)

Furthermore, recalling that the value ofme remains bounded
between ±1 and Kq > 0, it immediately follows that

V (qe, ωe) > 0, ∀ {
qe, ωe

} �= {
q∗
e , ω

∗
e

}
. (30)

By simple inspection, it can be shown that the norm of the
state would go to infinity only when the norm of the angular
velocity goes to infinity. Also, it can be shown that the
chosen LF is radially unbounded because

‖ωe‖2 → ∞ ⇒ V (qe, ωe) → ∞, (31)

thus satisfying all the conditions for an LF as specified
in [36].

Next, by differentiating Eq. 28, we obtain that

V̇
(
qe, ωe

) = 1

2
ω̇T
e K−1

q Jωe + 1

2
ωT
e K−1

q J ω̇e − 2ṁe, (32)

which can be simplified by recalling that K−1
q J is

Hermitian positive-definite and thus K−1
q J = (K−1

q J )T .
Furthermore, by examining q̇e in Eq. 27, it follows
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that ṁe = − 1
2ω

T
e ne. Thus, substituting these identities into

Eq. 32 yields

V̇
(
qe, ωe

) = ωT
e K−1

q J ω̇e + ωT
e ne. (33)

Additionally, using the second line of Eq. 27, this expression
can be further simplified and written as

V̇
(
qe, ωe

) = −ωT
e K−1

q Kωωe. (34)

Last, since Kω is positive definite, the time derivative of
the LF is negative semidefinite for any conceivable state.
Namely,

V̇
(
qe, ωe

) ≤ 0, ∀ {
qe, ωe

}
, (35)

where the set of states for which V̇ (qe, ωe) = 0 is
{
qe, ω

∗
e

}
,

for any qe. However, by examining Eq. 27, it is clear
that when ωe = ω∗

e and ne �= n∗
e , the expression for ω̇e

is nonzero. Therefore, no solution to V̇ (qe, ωe)= 0 can
remain in the set

{
qe, ω

∗
e

}
except at the two closed-loop

equilibrium points. Note that since the equilibrium point
corresponding to me = −1 is unstable, for any conceivable
initial condition, the state of the attitude closed-loop system
specified by Eq. 27 will converge to

{
q∗
e , ω

∗
e

}
. Therefore,

this equilibrium point is asymptotically stable.

To analyze the stability of the position closed-loop
system, we assume that the rate of convergence of the
attitude error is fast enough such that b3 ≈ bd,3 and, as a
consequence,

f b3 ≈ f a. (36)

This assumption has been validated through simulations and
experiments. As shown in Fig. 6, the position tracking error
is given by re = rd − r . Thus, using Eq. 36 and plugging
Eq. 16 into Eq. 1 yields

mr̈e(t) = −Kpre(t) − K i

∫ t

0
re(τ )dτ − Kdṙe(t). (37)

Since Kp, K i, and Kd are diagonal matrices, this equation
can be decoupled into a system of three third-order LTI
ordinary differential equations of the form

m
...
x + Kdẍ + Kpẋ + K ix = 0, (38)

where x(t) = ∫ t

0 re(τ )dτ . Clearly, the sole equilibrium
point of this linear system is x∗ = ẋ∗ = ẍ∗ = [0 0 0]T and
its global asymptotic stability can be shown using classical
linear systems theory. Here, we write this result in the form
of a proposition.

Proposition 2 Let Kp, K i, and Kd be diagonal matrices
that satisfy the inequalities Kd > 0, Kp − mK iK

−1
d > 0,

and K i > 0. Then, the equilibrium point, x∗ = ẋ∗ = ẍ∗ =0,
of the closed-loop system described by Eq. 38 is globally
asymptotically stable.

Proof The linear system described by Eq. 38 is globally
asymptotically stable if all the roots of the three associ-
ated characteristic polynomials have negative real parts.
Directly from the Routh-Hurwitz stability criterion, it fol-
lows that this condition is satisfied as long as Kd > 0,
Kp − mK iK

−1
d > 0, and K i > 0.

3.7 Simulation Results

Before experimentally testing the architecture for flight
control of FWMAVs presented in Sections 3.4 and 3.5, we
implemented and executed Simulink simulations, according
to the block diagram in Fig. 6, to validate its function-
ality and evaluate its performance. The plant used for
simulation is the rigid-body model specified by Eq. 6 in
Section 3.1 with the parameters of the Bee++ (m = 10−4 kg;
J = diag

{
3.86×10−9, 2.57×10−9, 3.99× 10−9

}
kg · m2).

To add realism to the simulation, we added actuator and
sensor noise. We generated additive sensor noise signals
by filtering white noise, which is produced using the uni-
form pseudorandom number generation block, through
digital finite impulse-response (FIR) lowpass filters with
order 210 and a cutoff frequency of 200Hz. The noise
signals added to the simulated position signals r1, r2, and
r3 have experimental standard deviations (ESDs) of 10−5,
2× 10−5, and 6× 10−5 m, respectively; the noise signals
added to the simulated attitude signals ψ , θ , and φ have
ESD values of 0.5729, 0.2865, and 0.1719 ◦, respectively.
To generate actuator noise, we added periodic disturbances
with time-varying amplitudes and biases to the four forces
generated by the flapping wings. We defined these sig-
nals to vary their amplitudes and biases randomly, using
the uniform pseudorandom number generation block, at
intervals of 0.003 s. The resulting root-mean-square (RMS)
value of each of these signals is about 0.068mN. Using
experimental data, we determined that this level of actuator
disturbance is similar to that experienced by the physical
Bee++ system. The simulations were implemented and
run on a Lenovo ThinkPad laptop, using version 10.1 of
Simulink (MATLABR2020a). We set the numerical solver
to use the Bogacki–Shampine method with a fixed step
of 0.5ms (2 kHz), the control algorithms were executed
at a simulated sampling rate of 2 kHz, and the simulated
measurements of the system outputs were updated at fixed
steps of 2ms (500Hz) to correspond with the Vicon system
used in the experiments.

A simulation result is shown as an example in Fig. 7.
In this case, the position reference is the constant vector
rT
d = [

rd,1 rd,2 rd,3
] = [0 0 0.15] m, which corresponds

to normal hovering. As clearly seen in Fig. 7(a), in about
1.4 s, the system reaches the empirical steady state, which
exhibits errors with ESD values of about 10, 10, and 30mm
along the n1 (blue), n2 (red), and n3 (green) directions,
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Fig. 7 Simulation results. In this numerical simulation, the Bee++

FWMAV was controlled to hover at the fixed inertial-position refe-
rence rd = [0 0 0.15]T m. (a) Comparison of the position-reference
vector rd(t) (whose three components are shown using dashed
lines) with the simulated measured position vector r(t) (whose
three components are shown using continuous lines). (b) Simulated
measured roll and pitch angles, φ and θ . The references for φ and θ are
not explicitly decided or computed but are implicitly determined by
the desired attitude quaternion qd, for a given yaw-angle reference ψd
as specified by Eq. 21. (c) Simulated measured yaw angle ψ . In order
to leave this DOF in open loop, for the computation of Sd according to
Eq. 18, we set ψd = ψ

respectively. In agreement with the control scheme in Fig. 6,
the roll and pitch angles shown in Fig. 7(b) correspond to the
attitude required to reach the desired position rd, qd. For the
computation of

{
bd,1, bd,2, bd,3

}
as specified by Eq. 18, we

used ψd = ψ , which is equivalent to leaving the yaw DOF
in open loop. The time evolution of the simulated yaw angle
ψ is shown in Fig. 7(c). Overall, the three plots in Fig. 7
show a nearly perfect performance of the scheme in Fig. 6
as a position control method. Clearly, the controller quickly
and effectively stabilizes the robot’s position and attitude
with both very small overshoot and steady-state error. This
simulation alone is not a rigorous method for predicting
experimental performance of the controller because it does
not account for all the types of environmental disturbances

affecting FWMAVs during flight. However, it does serve
as an effective test platform for evaluating and debugging
controller updates prior to implementation on the physical
systems.

4 Experimental Results

4.1 Experimental Setup

To implement the proposed control architecture and test its
ability to stably fly both the RoboBee and Bee++ FWMAVs,
we built a flight arena instrumented with low-latency
high-resolution sensors, fast digital signal processors, and
high-precision actuator drivers, which in combination
enable high-performance position and attitude tracking. A
six-V5-camera Vicon motion capture system is used to mea-
sure the position and orientation of the tested robots during
flight. These measured signals are sent to the real-time
controller at a rate of 500Hz. Before flight control exper-
iments are performed, the tested robotic prototypes are
outfitted with four reflective markers (see Fig. 1) to enable
detection by the Vicon cameras and thus real-time capture of
the rigid motions of the flyers. Specifically, by arranging the
Vicon V5 cameras distributively about the flight test arena
and using the Vicon Tracker 3.5 software, the three compo-
nents of the position vector, r , and the three Euler angles
in the x-y-z body-fixed rotation convention are estimated in
real time. For the purpose of control implementation, we
further convert these three angles to the z-y-x body-fixed
rotation convention, {ψ, θ, φ}, which is equivalent to the
roll-pitch-yaw sequence of rotations with respect to the iner-
tial frame. As shown in Fig. 6, r is directly fedback to be used
by the position controller block while φ, θ , and ψ are used
to compute the measured attitude quaternion, q, as speci-
fied by the method described in [30, 31]. According to data
obtained through calibration tests, the Vicon system gener-
ates highly-accurate measurements with observed levels of
sensor noise with ESDs with values of less than 0.1mm and
0.4 ◦ for translational and rotational motion, respectively.

During the performance of flight experiments, the con-
troller in Fig. 6 is run on a host-target MathWorks Simulink
Real-Time system (MATLABR2016a). The target computer
functions as a real-time digital signal processor and phys-
ically supports the board (National Instruments PCI-6229)
used for analog-to-digital (AD) and digital-to-analog (DA)
conversion at a sample-and-hold rate of 2 kHz. Before being
processed by the control algorithms, the components of the
measured position and attitude signals are filtered through
lowpass filters, with the continuous-time form

H1(s) = ωc

s + ωc
, (39)
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with the purpose of eliminating high-frequency noise. Here,
ωc is the−3-dB cutoff frequency of the filter, which is chosen
to be 200 rad · s−1 (31.83Hz) in order to effectively can-
cel noise introduced by the upsampling processing of r and
the Euler angles. Upsampling is required because the Vicon
system functions at 500Hz and the controller at 2 kHz. We
chose to use a first-order filter to minimize the latency intro-
duced by the filtering process. During the implementation
of the algorithms, the continuous-time transfer function of
the filter, H1(s), was discretized using the bilinear method.

As already explained, the Vicon-measured Euler angles
are transformed into the measured attitude quaternion, q,
simply using quaternion algebra and the rotation matrix S.
However, since the Vicon system does not provide any form
of attitude rate, the attitude quaternion’s derivative, q̇, and
the attitude-reference quaternion’s derivative, q̇d, are
estimated using a lowpass derivative filter (LDF) with the
continuous-time form

H2(s) = λs

s + λ
, (40)

where the parameter λ determines the speed of the filter. To
implement the flight controller experimentally, through an
iterative tuning process, λ was chosen to be 300 rad · s−1

(47.75Hz), a value for which the filter was observed
to estimate q̇d reasonably well, without significantly
amplifying noise and with a very small delay. During
the implementation of the algorithms, the continuous-time
transfer function of the LDF filter, H2(s), was discretized
using the bilinear method. A similar LDF was implemented
to estimate the velocity vector, ṙ , which is required by the
position controller block in Fig. 6.

During operation, once all the state variables of the
robot are measured and filtered, or estimated, the control

algorithm calculates the actuator-exciting voltages, ei , for
i ∈ {1, 2} in the RoboBee case and i ∈ {1, 2, 3, 4} in the
Bee++ case, as specified by Eq. 11 and depicted in Fig. 6.
These voltages are transmitted from the DA board of the
target computer to a set of drivers that provide the power
required to properly excite the piezoelectric actuators of
the tested FWMAV. The voltages generated by the drivers
are transmitted to the actuators of the tested Robot using
52-AWG (20 µm in diameter) copper wires.

4.2 RoboBee Flight Tests

The experimental results presented in this section were
obtained after a systematic tuning process of the control
gain matrices for the scheme in Fig. 6, specified in Section 3.
Here, we describe and present an analysis of the closed-loop
results obtained during a typical representative flight test
for a RoboBee prototype in terms of stability, performance,
and robustness against model uncertainty and external per-
turbations. Dozens of similar experiments were performed
and similar measurements were obtained in all of them.

In the particular experiment discussed in this section, the
robot was initially at rest at approximately the inertial loca-
tion r = [0 0 0]T m and the position-reference vector was
set at rd = [0 0 0.15]T m. The instantaneous yaw-angle
reference signal, ψd(t), was set equal to the current
yaw-angle measurement, ψ(t), which effectively disabled
the yaw controller. This setting is necessary because the
RoboBee design is not capable of reliably generating
enough yaw torque for control via the split-cycling method
to produce effective yaw tracking and stability [5–8, 37].
Fortunately, as expected from analyzing the control archi-
tecture shown in Fig. 6 and verified through experiments,
the lack of sufficient yaw torque for control does not prevent

0 s

0.2 s

0.3 s

0.4 s

5.0 s 15.0 s10.0 s

Landing

Fig. 8 Controlled flight experiment of the tested RoboBee prototype.
This image composite shows the tested robot at various instants during
a position control experiment. Here, the robot can be seen taking off
from the inertial position r = [0 0 0]T m to reach the inertial-position

reference rd = [0 0 0.15]T m in about 0.5 s and fly stably for more
than 15 s. A similar behavior in terms of stability and performance was
observed in dozens of other flight tests
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the position controller from achieving stability and high per-
formance. Additionally, during the experimental controller
tuning process, it was determined that, due to the tested
RoboBee prototype’s limited control authority, the integral
control term in Eq. 16 induces actuator saturation, which
significantly decreases the performance and stability robust-
ness of the system. To eliminate this issue, the integral term
was disabled in the experimental controller. In all the flight
control tests, the tested RoboBee prototype was operated at
a constant flapping frequency of 100Hz.

As seen in the photographic composite shown in Fig. 8
and the plots in Fig. 9, during the flight test, the controller
is turned on at time t = 0 s and the RoboBee prototype
takes off to reach the reference height in about 0.5 s. Then,
the robot stably maintains the desired position, rd, with
acceptable performance and moderate steady-state error
until the controller is turned off at time t = 19 s. The plot
in Fig. 9(a) compares the measured position, r , with the ref-
erence, rd, and Fig. 9(b) shows the measured roll and pitch
angles, whose references correspond to the attitude-reference
quaternion, qd(t), computed as specified by Eq. 21 with
ψd(t)= ψ(t). The resulting measured yaw angleψ is shown
in Fig. 9(c). From these three plots, it is clear that the
proposed controller successfully regulates both the lateral
position, {r1, r2}, and altitude, r3, of the controlled robot
with a short transient period and an overshoot of about 27%
relative to the steady-state mean altitude. The lateral-position
signals exhibit steady-state biases of about 0.010m, which
for all practical purposes can be considered to be negli-
gible. Also, these two variables exhibit seemingly random
lateral errors, with ESD values of about 0.020m in the r1
measurement and about 0.018m in the r2 measurement.
The measured altitude, on the other hand, displays a more
noticeable negative steady-state bias of about 0.027m and
a seemingly random error with an ESD value of about
0.012m. Video footage of the complete experiment can be
seen in the accompanying Supplementary Movie.

In the case of the RoboBee, positional errors are
primarily caused by environmental disturbances and noise
in the angular-velocity measurement of the controlled
FWMAVs. In fact, small variations in the local airflows
surrounding a RoboBee prototype and shifts in the actuator
wiring can have a significant impact on the corresponding
control performance due to the small mass and rotational
inertia of the system. Note that lateral-position disturbances
are more difficult to cancel than vertical ones because of
the delay in the dynamic response between when the force
vector in Eq. 16 is requested by the position controller and
when it is achieved by the attitude controller. Furthermore,
the estimation of the robot’s angular velocity, ω, and the
calculation of the desired angular velocity, ωd, both require
the use of lowpass filters with the form specified by Eq. 40,
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Fig. 9 Experimental results obtained using a RoboBee prototype. In
this flight test, the tested FWMAV is controlled to hover at the fixed
inertial-position reference rd = [0 0 0.15]m. (a) Comparison of the
position-reference vector rd(t) (whose three components are shown
using dashed lines) with the experimentally-measured position vector
r(t) (whose three components are shown using continuous lines).
(b) Experimental roll and pitch Euler angles, φ and θ , which were
measured in real time using the Vicon motion capture system described
in Section 4.1. During controlled flight, the references for φ and θ

are not explicitly decided or computed but implicitly determined by
the desired attitude quaternion qd, for a given yaw-angle reference
ψd as specified by Eq. 21. (c) Experimentally-measured yaw angle ψ .
In order to leave this DOF in open loop, for the computation of Sd
according to Eq. 18, we set ψd = ψ

which under certain conditions can introduce non-negligible
amounts of noise into the calculation of the angular-velocity
error, as specified by Eq. 26. We believe that this type of
noise contributes to the steady-state oscillation observed
in Fig. 9. The smaller oscillatory control errors in altitude
are explained by the greater control authority over the r3
DOF, which results from the near-perfect alignment of the
generated thrust force with the body-fixed b3 direction. The
steady-state altitude bias observed in Fig. 9(a) is explained
by systematic errors introduced by the linear actuator
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mapping specified by Eq. 13, which is an approximation,
coupled with the lack of integral control action.

From Fig. 9(b), it can be deduced that the b3 axis of the
tested RoboBee prototype reaches a stable alignment with
the inertial n3 axis. Note, however, that the roll and pitch
angles undergo significant variations during flight. These
variations display quantified steady-state biases of about
2.7 ◦ in roll and about 0.1 ◦ in pitch. Also, these two angle
signals exhibit oscillations with ESD values of about 10.4 ◦
and about 10.1 ◦, respectively. According to the method
described in Section 3.5, during flight, the proposed control
scheme intentionally introduces some attitude deviation rel-
ative to the n3 axis because the position controller adjusts
the attitude reference signal as specified by Eq. 18 in order to
point the robot toward the position reference in space.
However, the large error values seen in Fig. 9(b) are predom-
inantly attributable to underactuation and the considerable
effects of the aerodynamic disturbance forces and torques
affecting the system. The impact of these disturbances on
the attitude of the robot is inversely correlated with the mag-
nitudes of the inertial parameters of the system. Namely,
due to the small values of the mass and inertia matrix of the
tested prototype, the relative impact of moderate external
disturbances on the system is always significant. Further-
more, because the tested RoboBee prototype has a lim-
ited capability to generate aerodynamic control forces and
torques, its associated thrust-to-weight ratio is low and, as
a consequence, its actuators always operate near saturation.
In general, if the control signals reach the saturation limits
due to the influence of external disturbances, the system can
begin to destabilize. Fortunately, according to the real-time
experimental data, the external disturbances affecting the
system tend to have short durations, enabling the controller
to recover after destabilizing events.

4.3 Bee++ Flight Tests

In the flight experiments of the tested Bee++, we also used
the experimental setup described in Section 4.1. As in the
RoboBee case, we present the results obtained through a
single representative flight test. In general, the discussed
experimental test is highly repeatable and the measured
response can be considered typical in terms of performance
and stability robustness. As seen in the photographic
composite shown in Fig. 10 and plots in Fig. 11, dur-
ing the flight test, the robot starts its trajectory from
approximately r = [0 0 0]T m. Then, commanded by the
position reference rd(t), for t ∈ [0 : 20] s, which is plotted
using dashed lines in Fig. 11(a), at time t = 0 s, the robot
takes off to reach the reference point rd = [0 0 0.15]T m.
Last, at time t = 18 s, commanded by the position reference,
the robot starts to land. In summary, during the 20 s that
the flight experiment lasted, the tested Bee++ prototype suc-
cessfully took off, stably tracked a constant altitude-position
reference, and performed a controlled landing maneuver.
Video footage of the entire experiment can be seen in the
accompanying Supplementary Movie.

As in the RoboBee case, yaw control was disabled by
setting the yaw-angle reference to be equal to the measured
instantaneous yaw angle, i.e., ψd(t)= ψ(t). While the
four-wing design of the Bee++ enables effective yaw control,
this novel feature of the robot was disabled in the
implementation of the flight experiments in order to ensure
consistency of comparison with the experimental results
obtained with the RoboBee prototype. For the same reason,
the integral action of the position controller specified by
Eq. 16 was also disabled before the performance of the flight
tests. In the experiment corresponding to the data shown in
Fig. 10, the tested Bee++ prototype operated with a constant
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0.4 s

5.0 s 15.0 s10.0 s

Landing

Fig. 10 Controlled flight experiment of the tested Bee++ prototype.
This image composite shows the tested robot at various instants during
a position control experiment. Here, the robot can be seen taking off
from the inertial position r = [0 0 0]T m to reach the inertial-position

reference rd = [0 0 0.15]T m in about 0.5 s and fly stably for more
than 15 s. A similar behavior in terms of stability and performance was
observed in dozens of other flight tests
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flapping frequency of 150Hz. This value was chosen to be
lower than the estimated 165Hz bandwidth of the lowpass
mapping that receives as inputs the actuator excitations, ei ,
for i ∈ {1, 2, 3, 4}, and produces as outputs the flapping
motions, ϕi , for i ∈ {1, 2, 3, 4}, in order to increase the
life expectancy of the compliant components of the robot by
extending the time required to reach fatigue.

The plot in Fig. 11(a) clearly shows that the proposed
control method is capable of regulating the lateral positions
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Fig. 11 Experimental results obtained using a Bee++ prototype. In
this flight test, the tested FWMAV is controlled to hover at the fixed
inertial-position reference rd = [0 0 0.15]T m. (a) Comparison of the
position-reference vector rd(t) (whose three components are shown
using dashed lines) with the experimentally-measured position vector
r(t) (whose three components are shown using continuous lines).
During the experiment, all three measured components remained
stable about the reference signals with reasonably small steady-state
errors. (b) Experimental roll and pitch Euler angles, φ and θ , which
were measured in real time using the Vicon motion capture system
described in Section 4.1. During controlled flight, the references for φ

and θ are not explicitly decided or computed but implicitly determined
by the desired attitude quaternion qd, for a given yaw-angle reference
ψd as specified by Eq. 21. During the experiment, these two Euler
angles remain stable and with reasonably small steady-state errors.
(c) Experimentally-measured yaw angle ψ . In order to leave this DOF
in open loop, for the computation of Sd according to Eq. 18, we set
ψd = ψ

and altitude of the tested Bee++ prototype. The transient
period after reaching the reference point [0 0 0.15]m is
quite fast with an overshoot of only 17% and, unlike in the
RoboBee case, the altitude control error shows a negligible
steady-state bias and the corresponding ESD value is in
the order of only 0.005m, which represents a significant
improvement with respect to the performance achieved by
the tested RoboBee prototype. The lateral-position error
has a bias of about −0.020m in the r1 direction and of
about 0.017m in the r2 direction, and ESD values of about
0.024m and about 0.023m in the r1 and r2 directions,
respectively. These ESD values are slightly worse than
those corresponding to the RoboBee experiments. As in the
RoboBee case, the lateral-position control errors are the
result of environmental disturbances and numerical errors
introduced during the estimation of the angular-velocity
state. We hypothesize that the electrical tether connecting
the robot to the piezoelectric-actuator drivers causes an
approximately-constant disturbance, which produces the
steady-state lateral biases observed in Fig. 11(a). This issue
could potentially be eliminated by activating the term
corresponding to integral control in Eq. 16.

Also, from Fig. 11(b), it is clear that during flight, the
tested Bee++ prototype is able to closely align its yaw axis
with the inertial vertical axis, n3, and maintain this attitude
throughout the flight experiment. In this case, the measured
roll and pitch angles exhibit high-frequency oscillations
with respective steady-state biases of about 2.6 and 3.2 ◦,
and respective ESD values of about 6.3 and 3.8 ◦. Note that,
in principle, for a constant position reference, the attitude
should correspond to roll, pitch, and yaw values of zero.
However, according to the control scheme in Fig. 6, a nonzero
attitude orientation of the robot with respect to the inertial
frame of reference during flight is inevitable because, as
previously discussed and specified by Eq. 18, the attitude
reference is continually changed for the purpose of position
control. Despite this fact, the amount of vibration could
potentially be reduced via iterative tuning and improved
filtering. As already discussed, for the purpose of direct
comparison with the RoboBee, we keep the yaw DOF in
open loop by setting ψd(t) = ψ(t). The time evolution of
ψ is shown in Fig. 11(c). As expected, in the absence of
control, this angle drifts significantly during flight.

From the experimental data summarized in Figs. 10 and
11, we can conclude that although the impact of external
disturbances is still significant in the Bee++ case, its two
additional wings generate a considerable additional thrust
force when compared to that produced by a RoboBee
prototype, which is one of the key innovations of the
Bee++ design. During hovering flight, this additional thrust
mostly acts along the inertial n3 direction, resulting in an
improved vertical control authority and a 58% reduction
in the ESD value of the altitude error when compared to
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those of the RoboBee case. Similarly, the four-wing-based
torque generation scheme positively impacted the measured
attitude performance with a 39% drop in roll error and a
62% drop in pitch error in terms of ESD values.

In summary, the experimental results obtained with the
tested Bee++ prototype demonstrate a significant superiority
of this robot in terms of performance with respect to both
the RoboBee prototype presented in Section 4.3 and the first
Bee+ design in [8, 27]. Most importantly, this new improved
version of the four-wing Bee+, with the design updates
described in Section 2, can be robustly controlled and
destabilizing pitch-angle oscillations observed in previous
iterations of this design (see [8] and [27]) have been
effectively eliminated. Solving this problem was essential to
enable the tested Bee++ prototype to fly for extended periods
of time and achieve enhanced positional stability.

5 Conclusions and FutureWork

We presented a mathematically-rigorous method for synthe-
sizing and implementing in real time a multiplatform control
architecture for flapping-wing flying robotic insects. As
demonstrated through simulations and flight experiments,
the resulting synthesized controllers are computationally
simple, experimentally reliable, and highly effective from
the stability and performance perspectives. The synthesis
method is based on modern linear system theory and non-
linear Lyapunov analysis. The basic control structure used
for design and real-time implementation was conceived
with the objective of creating a highly-reusable easy-to-tune
feedback controller for implementation on a wide variety
of FWMAVs that are characterized by the generation of
thrust along a main single direction. The functionality and
performance of the proposed control method, as a posi-
tion regulator devised to enable steady level flight, were
demonstrated using experimental results obtained with two
different platforms. One was a slightly-modified version of
the two-wing Harvard RoboBee presented in [3] and the
other was the Bee++, which is an improved version of the
four-wing microrobot we first presented in [8] in 2019.

Although the proposed control architecture and experi-
mental results presented in this paper represent considerable
progress with respect to the current state of the art of aerial
microrobotics [27], there still is ample room for improvement
from the control perspective in terms of overall performance,
experimental implementation, and computational efficiency.
For instance, with minor modifications, controller function-
ality and performance could be demonstrated across a much
broader range of flight experiments. Given the potential
widespread applicability of FWMAVs to perform tasks such
as artificial pollination, search and rescue, and exploration,
it is highly desirable to accomplish more complex control

objectives in order to create a set of control primitives as
defined in [38, 39]. Yaw-angle regulation and tracking, tra-
jectory tracking, attitude pointing, and object following are
all potential applications of the proposed control method.
Furthermore, the steady-state performance can be improved
through the use of a systematic control-gain tuning process
based on system identification and a more precise real-time
estimation of the robot’s state via an observer.

Appendix A: Lipschitz Continuity of the
Closed-Loop Attitude State-Space System

Here, we show that the closed-loop state equations specified
by Eq. 27 satisfy the Lipschitz continuity condition. First,
recall that all continuous functions with bounded first-order
derivatives satisfy the Lipschitz continuity condition,
although the converse is not necessarily true [36, 40]. By
inspection, it is immediately clear that the vector function
on the right side of Eq. 27 is continuous. To determine if the
derivatives of this vector function are bounded, it is helpful
to find the Jacobian matrix of the system, which is given by

(41)
where A is 7 × 7; �e is the skew-symmetric cross-product
matrix, as defined in [30], for ωe; and Ne is the
skew-symmetric cross-product matrix, as defined in [30],
for ne.

Last, recalling that the components of the quaternion
are bounded between ±1, it follows that all the entries

of the Jacobian matrix are bounded, except when one or
more of the components of ωe → ±∞. Therefore, the
vector function on the right in Eq. 27 satisfies the Lipschitz
continuity condition, locally.

Appendix B: Equilibrium Points of the
Closed-Loop Attitude State-Space System

To find the fixed points of the system specified by Eq. 27, we
first set and ω̇e = [0 0 0]T , which yields

Then, we solve for and ωe.
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From simple examination of the second line in Eq. 42,
it can be deduced that meωe and ne × ωe are orthogonal
to each other; therefore, their difference can only be zero
if both terms are equal to zero. Also, the ne × ωe term
can only be zero if ne and ωe are parallel, or one or both
vectors are zero. Next, note that the first line in Eq. 42
can only be satisfied if ne and ωe are orthogonal to each
other, or one or both vectors are zero. Since ne and ωe

can not simultaneously be orthogonal and parallel, one or
both vectors must be zero. Last, to satisfy the third equation
in Eq. 42, it is clear that, since and J−1Kω are
full rank, if either ne or ωe is equal to zero, then both
must be zero. Therefore, ne = [0 0 0]T and ωe = [0 0 0]T

constitute the only solution to Eq. 42.
Thus far, we have not imposed any restrictions on me;

however, since is a unit quaternion, the scalar compo-
nent me takes either the value 1 or −1 when ne = 03×1

and ωe = 03×1. This implies that the closed-loop system
given by Eq. 27 has two equilibrium points. Namely,
[±1 0 0 0 0 0 0]T .

Appendix C: Instability of the Second
Equilibrium Point

The equilibrium point corresponding to me = −1,
ne = [0 0 0]T , and ωe = [0 0 0]T can be shown to be
unstable using Lyapunov’s indirect method as presented
in Theorem 4.7 of [36]. In this case, this method is valid
because the vector function on the right side of the
closed-loop state-space system specified by Eq. 27 is con-
tinuously differentiable within a small neighborhood of
the equilibrium point. Accordingly, we first evaluate the
Jacobian matrix specified by Eq. 41 at the fixed point
corresponding to me = −1, which yields

The indirect method dictates that if any eigenvalue of
F has a positive real part, then the equilibrium point is
unstable. In this case, clearly, one of the eigenvalues of F is
0 and the other six are the eigenvalues of the submatrix

To find the eigenvalues of F̄ , we use the Schur complement
of F̄ 22. Specifically, the determinant of the block matrix F̄

can be written as

det
(
F̄

) = det
(
F̄ 22

)
det

(
F̄ 11 − F̄ 12F̄

−1
22 F̄ 21

)
. (45)

Thus, by substituting the terms that define F̄ , it follows that

(46)

Next, recalling that and that the determinant of
a positive definite matrix is always positive, we immediately
conclude that and, therefore, that

det
(
F̄

) =
6∏

i=1

λi < 0, (47)

where λi denotes the ith eigenvalue of F̄ . Since F̄ has an
even number of eigenvalues, Eq. 47 can only be satisfied if
at least one eigenvalue has a positive real part. Therefore,
we conclude that F must have at least one eigenvalue with
positive real part and that the equilibrium point is unstable.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10846-021-01556-2.
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15. Yang, X., Chang, L., Pérez-Arancibia, N.O.: An 88-milligram
insect-scale autonomous crawling robot driven by a catalytic
artificial muscle. Sci. Robot. 5(45). Art. no. eaba0015 (2020)

16. Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O.: Wingbeat
shape modulation for flapping-wing micro-air-vehicle control
during hover. J. Guid. Control Dynam. 33(3), 724–739 (2010)
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